
Bernie Pope, bjpope@unimelb.edu.au

VASET, 18 August 2016

American Fuzzy Lop

1

American Fuzzy Lop - VASET 18 August 2016

Outline

• Fuzz testing.
• Key features of AFL.
• Example use case.
• Program instrumentation.
• Test case mutation.
• Impressive results.

2

American Fuzzy Lop - VASET 18 August 2016

Fuzz Testing

• A program is applied to a wide variety of inputs,
including unexpected, invalid and random inputs, in an
attempt to provoke an error.

• Especially popular in security; searching for inputs
which trigger security flaws.

• B.P. Miller, L. Fredriksen, and B. So, "An Empirical Study
of the Reliability of UNIX Utilities", Communications of
the ACM 33, 12 (December 1990).

3

Originally a graduate class
assignment in Advanced

Operating Systems subject at UW-
Madison, 1988.

American Fuzzy Lop - VASET 18 August 2016

Fuzz Testing

• How to get good program coverage in reasonable time?

• Purely randomised inputs are unlikely to efficiently
explore the input search space.

• Naive techniques probably only find shallow bugs.

4

American Fuzzy Lop - VASET 18 August 2016

American Fuzzy Lop (AFL)

• Author: Michał Zalewski

• License: Apache License, Version 2.0

• Platforms: most Unix-like systems, and there is a fork
which runs on Windows.

• Most of this talk was inspired by the AFL docs, the AFL
source code, and the Michał Zalewski’s blog:

http://lcamtuf.blogspot.com

5

American Fuzzy Lop - VASET 18 August 2016

Main Features

• Compile-time program instrumentation.

• Employs a carefully tuned test-case generation
algorithm.

• Test case minimisation.

• Produces a corpus of test cases which can be used for
other testing purposes.

• Has relatively low runtime overheads.

6

American Fuzzy Lop - VASET 18 August 2016

Overall Process

7

queue := initial_test_cases
seen := ∅

forever:
 new_queue := copy(queue)
 for next in queue:
 for test_input in mutate(next):
 signature := execute(program, test_input)
 if signature ∉ seen:

 new_queue.append(test_input)
 seen.add(signature)
 queue := cull(new_queue)

American Fuzzy Lop - VASET 18 August 2016

Example Use Case

8

#define MIN_DIGITS 6

int main(int argc, char **argv)
{
 char buf[MAXBUF];

 fgets(buf, MAXBUF-1, stdin);

 if (str_is_digits(buf) && (strlen(buf) >= MIN_DIGITS))
 {
 if (is_prime(atoi(buf)))
 {
 abort();
 }
 }
 return 0;
}

Toy program, for the
sake of demonstration.

American Fuzzy Lop - VASET 18 August 2016

Example Use Case

9

#define MIN_DIGITS 6

int main(int argc, char **argv)
{
 char buf[MAXBUF];

 fgets(buf, MAXBUF-1, stdin);

 if (str_is_digits(buf) && (strlen(buf) >= MIN_DIGITS))
 {
 if (is_prime(atoi(buf)))
 {
 abort();
 }
 }
 return 0;
}

Program aborts if input is
a string of at least 6 digits
denoting a prime number

in base 10.

American Fuzzy Lop - VASET 18 August 2016

Example Use Case

10

compile the program with the AFL compiler wrapper

afl-clang is_prime.c

create an initial test case (a large non-prime)

mkdir test_cases
echo -n ‘492876842’ > test_cases/test.txt

run the fuzzer on the compiled program
- specify directory containing initial test cases
- specify directory to store results (findings)

afl-fuzz -i test_cases -o findings -- ./a.out

wait, monitor output, and hit control-c when done

American Fuzzy Lop - VASET 18 August 2016

AFL dashboard

11

American Fuzzy Lop - VASET 18 August 2016

Examine Findings

12

inspect test case(s) which cause crashes

cat findings/crashes/id:000000,sig:06,src:000000,op:havoc,rep:4
449287?

hmm, what is going on here?

od -a findings/crashes/id:000000,sig:06,src:000000,op:havoc,rep:4
0000000 4 4 9 2 8 7 nul soh ?
0000011

Null byte was inserted at the
7th position. The program

checks if 449287 is prime (which
it is), and aborts.

American Fuzzy Lop - VASET 18 August 2016

Execution Signatures
• AFL computes a signature for each program execution.

• The signature approximates the set of branches taken by
a program, and their counts.

• A signature is considered interesting if a new branch is
taken, or a significant change occurs in the number of
times a branch is taken.

• The signature does not retain any information about the
order in which branches were taken.

13

American Fuzzy Lop - VASET 18 August 2016

Execution Signatures
• Branches (edges) are represented by tuples:

(p1, p2)

where p1 and p2 are program points

p1 is branch source

p2 is branch destination

• Branch counts are binned to: 1, 2, 3, 4-7, 8-15, 16-31,
32-127, 128+

14

American Fuzzy Lop - VASET 18 August 2016

Execution Signatures
• Suppose the first execution of the program consists of this trace (ignoring counts):

A ⇒ B ⇒ C ⇒ D ⇒ E

• AFL records this set of tuples:

(A, B), (B, C), (C, D), (D, E)

• And the next execution gives rise to this trace:

A ⇒ B ⇒ C ⇒ A ⇒ E

• This is interesting because it includes a new tuples (C, A) and (A, E).

• However, this trace does not produce any new tuples, and is therefore not
considered interesting:

A ⇒ B ⇒ C ⇒ A ⇒ B ⇒ C ⇒ D ⇒ E

15

American Fuzzy Lop - VASET 18 August 2016

Program Instrumentation

• Code inserted at branch points is (roughly):

cur_location = <COMPILE_TIME_RANDOM>;

shared_mem[cur_location ^ prev_location]++;

prev_location = cur_location >> 1;

16

American Fuzzy Lop - VASET 18 August 2016

• Code inserted at branch points is (roughly):

cur_location = <COMPILE_TIME_RANDOM>;

shared_mem[cur_location ^ prev_location]++;

prev_location = cur_location >> 1;

Program Instrumentation

17

Only a fixed set of tuples is
considered. Tuple keys are made

by XORing program point
identities.

shared_mem is a 64 kB array of 8
bit counters.

American Fuzzy Lop - VASET 18 August 2016

• Code inserted at branch points is (roughly):

cur_location = <COMPILE_TIME_RANDOM>;

shared_mem[cur_location ^ prev_location]++;

prev_location = cur_location >> 1;

Program Instrumentation

18

Compile time random simplifies
the generation of identifiers for
program points, and keeps XOR

distribution uniform.

American Fuzzy Lop - VASET 18 August 2016

• Code inserted at branch points is (roughly):

cur_location = <COMPILE_TIME_RANDOM>;

shared_mem[cur_location ^ prev_location]++;

prev_location = cur_location >> 1;

Program Instrumentation

19

Edge directionality is recorded by giving each
program point 2 identities.

destination: COMPILE_TIME_RANDOM
source: COMPILE_TIME_RANDOM >> 1

American Fuzzy Lop - VASET 18 August 2016

Program Instrumentation

• Tuple key collisions increase with branch count.

• Colliding tuples grows to 30% at 50,000 branches.
However, many real test cases contain fewer
discoverable branches.

• The 64 kB table can easily fit into L2 cache, and can be
analysed in microseconds.

• The 8 bit counters can overflow (and wrap).

20

American Fuzzy Lop - VASET 18 August 2016

Program Instrumentation

• afl_clang (afl_gcc, etc) is a compiler wrapper, applying a
transformation on the output assembly stream.

• The transformation looks for branch labels emitted by
the compiler, and conditional branch instructions.

21

American Fuzzy Lop - VASET 18 August 2016

Test Case Mutation
• Initial mutations are deterministic changes:

• bit flips

• addition and subtraction of small integers

• insertion of interesting values, 0, 1, INT_MAX …

• Randomised mutations are tried next, including splicing of different test cases.

• AFL can monitor the success rate of each mutation strategy for a given program and
modulate the choice of strategy to try to increase yield.

• Experiments have been run on many different input formats to get a feeling for
effectiveness of strategies. E.g. walking bit flips of a single bit tends to yield 70 new
execution signatures per million test cases tried:

https://lcamtuf.blogspot.com.au/2014/08/binary-fuzzing-strategies-what-works.html

22

American Fuzzy Lop - VASET 18 August 2016

Ornate Input Grammars
• Bit flipping style changes are quite effective for simple

“binary” formats, but will have difficulty navigating
input formats from complex grammars (e.g. HTML files,
computer programs).

• To combat this you can feed AFL a list of tokens from the
input language (e.g. keywords of a programming
language).

• It can find interesting rearrangements of input tokens
and thus “discover” some of the underlying grammar.

23

American Fuzzy Lop - VASET 18 August 2016

Impressive Results

• Synthesised valid JPEG images from a starting input
string of “hello” (after a couple of days fuzzing).

• Lots of bugs found in many popular libraries and tools,
including some significant security issues (e.g.
Shellshock)

http://lcamtuf.coredump.cx/afl/#bugs

24

