
Bernie Pope, bjpope@unimelb.edu.au

Melbourne Bioinformatics
12 August 2022

How Python❉ works

1

❉More specifically: How the reference implementation of Python, known as CPython, works

Melbourne Bioinformatics

Outline

• Syntax analysis.
• Translation to bytecode.
• Execution.
• Other ways of implementing Python.

2

Melbourne Bioinformatics

CPython’s execution pipeline

interpretcompilelex parse

Python source code Effect on the world

tokens AST byte
code

Melbourne Bioinformatics

Lexical analysis

• Recognises the tokens of the language (strings,
variables, numbers, punctuation, comments etcetera).

• Input is a sequence of characters, output is a sequence
of tokens.

4

Melbourne Bioinformatics

Lexical analysis
>>> from io import StringIO

>>> from tokenize import (generate_tokens, tok_name)

>>>

>>> stringIO = StringIO('x = y + 4')

>>> for t in generate_tokens(stringIO.readline):

... print(tok_name[t[0]], repr(t[1]))

...

NAME 'x'

OP '='

NAME 'y'

OP '+'

NUMBER '4'

NEWLINE ''

ENDMARKER ''

5

Melbourne Bioinformatics

Python has a formal grammar
file: [statements] ENDMARKER

interactive: statement_newline

statements: statement+

statement: compound_stmt | simple_stmts

statement_newline:

 | compound_stmt NEWLINE

 | simple_stmts

 | NEWLINE

 | ENDMARKER

... etcetera …

see: https://docs.python.org/3/reference/grammar.html

6

https://docs.python.org/3/reference/grammar.html

Melbourne Bioinformatics

Parsing produces an Abstract Syntax Tree
>>> from ast import (parse, dump)

>>> tree = parse('x = y + 4')

>>>

>>> dump(tree, annotate_fields=False)

"Module([Assign([Name('x', Store())], BinOp(Name('y', Load()), Add(), Num(4)))])”

7

Module

Assign

x Add

y 4

Melbourne Bioinformatics

CPython Bytecode

• The Abstract Syntax Tree is translated (compiled) into
bytecode.

• Bytecode is a collection of roughly 150 instructions for a
virtual machine.

• Each instruction consists of a single 8 bit (byte) opcode
followed by an optional 16 bit operand.

8

Melbourne Bioinformatics

CPython Bytecode

An example bytecode instruction in binary:

 01111100 0000000000000001

9

Opcode for the LOAD_FAST
bytecode instruction

Operand (the integer 1)

Melbourne Bioinformatics

CPython Bytecode
>>> from dis import dis

>>> def f(y):

... x = y + 4

... return x

...

>>> dis(f)

 3 0 LOAD_FAST 0 (y)

 3 LOAD_CONST 1 (4)

 6 BINARY_ADD

 7 STORE_FAST 1 (x)

 5 10 LOAD_FAST 1 (x)

 13 RETURN_VALUE

10

Melbourne Bioinformatics

CPython Bytecode
>>> from dis import dis

>>> def f(y):

... x = y + 4

... return x

...

>>> dis(f)

 3 0 LOAD_FAST 0 (y)

 3 LOAD_CONST 1 (4)

 6 BINARY_ADD

 7 STORE_FAST 1 (x)

 5 10 LOAD_FAST 1 (x)

 13 RETURN_VALUE

11

Source code line
numbers.

Melbourne Bioinformatics

>>> from dis import dis

>>> def f(y):

... x = y + 4

... return x

...

>>> dis(f)

 3 0 LOAD_FAST 0 (y)

 3 LOAD_CONST 1 (4)

 6 BINARY_ADD

 7 STORE_FAST 1 (x)

 5 10 LOAD_FAST 1 (x)

 13 RETURN_VALUE

CPython Bytecode

12

Bytecode
instruction offsets.

Melbourne Bioinformatics

>>> from dis import dis

>>> def f(y):

... x = y + 4

... return x

...

>>> dis(f)

 3 0 LOAD_FAST 0 (y)

 3 LOAD_CONST 1 (4)

 6 BINARY_ADD

 7 STORE_FAST 1 (x)

 5 10 LOAD_FAST 1 (x)

 13 RETURN_VALUE

CPython Bytecode

13

Instruction
Opcodes.

Melbourne Bioinformatics

>>> from dis import dis

>>> def f(y):

... x = y + 4

... return x

...

>>> dis(f)

 3 0 LOAD_FAST 0 (y)

 3 LOAD_CONST 1 (4)

 6 BINARY_ADD

 7 STORE_FAST 1 (x)

 5 10 LOAD_FAST 1 (x)

 13 RETURN_VALUE

CPython Bytecode

14

Instruction
Operands.

Melbourne Bioinformatics

CPython Bytecode
• Most bytecode instructions fall into one of the following four categories:

1. Control flow:

• JUMP_ABSOLUTE, RETURN_VALUE, POP_JUMP_IF_FALSE …

2. Variable manipulation:

• LOAD_FAST, STORE_FAST, LOAD_GLOBAL, STORE_GLOBAL …

3. Stack manipulation:

• ROT_TWO, POP_TOP, DUP_TOP …

4. Primitive operations

• MAKE_FUNCTION, LOAD_ATTR, BUILD_LIST, BINARY_ADD…

15

Melbourne Bioinformatics

Compilation
• Translates the Abstract Syntax Tree into bytecode

instructions for the CPython Virtual Machine.

• Input is an Abstract Syntax Tree, output is a code
object.

• The code object might be loaded directly into the
computer’s memory and interpreted immediately,
or it might be saved to file.

• The .pyc files you see on your computer are just
serialised code objects.

16

Melbourne Bioinformatics

Compilation

• Compilation converts the nested tree structure of the
AST into a linear sequence of instructions.

• The linear sequence of instructions reflects the
sequential nature of program execution.

• Code objects (such as those stored in .pyc files) are not
(supposed to be) portable across CPython versions.

17

Melbourne Bioinformatics

Execution
• Compiled CPython bytecode is executed by an interpreter which carries out the

behaviour of the Virtual Machine.

• In CPython, the bytecode interpreter is written in C (hence the name CPython).

• In addition to decoding and executing bytecode instructions, the interpreter
provides the following functionality:

• A stack for keeping track of local variables, intermediate values and control
flow.

• A heap for storing Python objects (pointed to by global variables and local
variables on the stack).

• Automatic memory management (called garbage collection).

• Input and output via the operating system.

18

Melbourne Bioinformatics

Example execution
y = 2
x = y + 4

Python source

LOAD_CONST 0
STORE_NAME 0
LOAD_NAME 0
LOAD_CONST 1
BINARY_ADD
STORE_NAME 1

Bytecode

2

4

"y"

"x"

Constants Heap Globals Names

0

1

0

1

Stack

Melbourne Bioinformatics

Example execution
y = 2
x = y + 4

Python source

LOAD_CONST 0
STORE_NAME 0
LOAD_NAME 0
LOAD_CONST 1
BINARY_ADD
STORE_NAME 1

Bytecode

2

4

"y"

"x"

Constants Heap Globals Names

0

1

0

1

Stack

Melbourne Bioinformatics

Example execution
Python source

LOAD_CONST 0
STORE_NAME 0
LOAD_NAME 0
LOAD_CONST 1
BINARY_ADD
STORE_NAME 1

Bytecode

2

4

"y"

"x"

Constants Heap Globals Names

0

1

0

1

Stack

"y"
y = 2
x = y + 4

Melbourne Bioinformatics

Example execution
Python source

LOAD_CONST 0
STORE_NAME 0
LOAD_NAME 0
LOAD_CONST 1
BINARY_ADD
STORE_NAME 1

Bytecode

2

4

"y"

"x"

Constants Heap Globals Names

0

1

0

1

Stack

"y"
y = 2
x = y + 4

Melbourne Bioinformatics

Example execution
Python source

LOAD_CONST 0
STORE_NAME 0
LOAD_NAME 0
LOAD_CONST 1
BINARY_ADD
STORE_NAME 1

Bytecode

2

4

"y"

"x"

Constants Heap Globals Names

0

1

0

1

Stack

"y"
y = 2
x = y + 4

Melbourne Bioinformatics

Example execution
Python source

LOAD_CONST 0
STORE_NAME 0
LOAD_NAME 0
LOAD_CONST 1
BINARY_ADD
STORE_NAME 1

Bytecode

2

4

"y"

"x"

Constants Heap Globals Names

0

1

0

1

Stack

"y"
y = 2
x = y + 4

6

Melbourne Bioinformatics

Example execution
Python source

LOAD_CONST 0
STORE_NAME 0
LOAD_NAME 0
LOAD_CONST 1
BINARY_ADD
STORE_NAME 1

Bytecode

2

4

"y"

"x"

Constants Heap Globals Names

0

1

0

1

Stack

"y"

6

"x"

y = 2
x = y + 4

Melbourne Bioinformatics

Garbage collection

• Garbage collection (GC) identifies data in the interpreter
heap that is no longer reachable by the running
program.

• Memory used by unreachable heap data is reclaimed by
GC for reuse.

• Without GC, heap usage would grow proportionally to
program running time and eventually exhaust available
virtual memory.

26

Melbourne Bioinformatics

Garbage collection
• There have been lots of GC algorithms proposed for programming

languages.

• CPython uses a very simple approach called reference counting.

• Every heap object contains a reference counter.

• The counter is incremented whenever a new pointer refers to the
object, and decremented when a pointer no longer refers to the
object.

• If the reference count reaches 0 then there are no longer any live
pointers to the object and it becomes garbage. Its heap memory can
be freed immediately.

27

Melbourne Bioinformatics

Garbage collection
• Pros of reference counting:

• simple to implement

• easy to work with data from foreign code

• memory is reclaimed immediately when an object becomes garbage

• Cons of reference counting:

• Each object requires a counter. For small objects this is proportionally quite a
large overhead in space.

• Counter increments/decrements must be atomic operations to remain safe in a
multi-threaded computation.

• Atomic operations are relatively expensive on modern CPUs.

• This overhead would be paid even in sequential code!

28

Melbourne Bioinformatics

The Global Interpreter Lock
• The CPython bytecode interpreter is protected by a Global

Interpreter Lock (GIL).

• This prevents more than one OS thread from executing the
interpreter at any point in time in a given process.

• This allows the interpreter to use non-atomic reference
count increment/decrements.

• However, the GIL does not apply to foreign code called
from the bytecode interpreter: e.g. calls into C/Fortran/
whatever libraries that don’t call back into the interpreter.

29

Melbourne Bioinformatics

The Global Interpreter Lock

• A “workaround” for the GIL is provided by the
multiprocessing library.

• Each parallel instance is a separate OS process (multiple
independent CPython instances running at once).

• Communication between processes is done by
serialising/deserialising data.

30

Melbourne Bioinformatics

The Global Interpreter Lock

• There have been many attempts to remove the GIL, but
they have usually penalised the performance of single-
threaded code. This has been considered untenable by
the CPython maintainers.

• However very recent work from Sam Gross (at
Facebook) called “nogil” shows very promising results.

31

Melbourne Bioinformatics

Other ways of implementing Python

• CPython is written in the C programming language.

• There are other alternative implementations of Python, such as:

• Jython (compiles to Java bytecode)

• PyPy (just-in-time compilation to machine code)

• IronPython (implemented in C#, runs on .NET)

• Shameless plug: blip (implemented in Haskell)

• https://github.com/bjpop/blip

32

Melbourne Bioinformatics

Closing remarks on Python performance

• Python is a pleasant language in many ways but it was
not designed with performance in mind.

• The dynamic nature of Python (i.e. no static types)
means many operations are extremely slow compared to
what is possible in other languages.

• Python can achieve good performance, but mostly by
calling into foreign code, e.g. C/Fortran libraries, as is
done in numpy for example.

33

