Melbourne Bioinformatics
12 August 2022

How Python™ works

Bernie Pope, bjpope@unimelb.edu.au

*More specifically: How the reference implementation of Python, known as CPython, works



Melbourne Bioinformatics

Outline

Syntax analysis.
- Translation to bytecode.
Execution.

Other ways of implementing Python.



Melbourne Bioinformatics

(Python’s execution pipeline

. code

\4

Python source code Effect on the world



Melbourne Bioinformatics

Lexical analysis

Recognises the tokens of the language (strings,
variables, numbers, punctuation, comments etcetera).

Input is a sequence of characters, output is a sequence
of tokens.



Melbourne Bioinformatics

Lexical analysis

>>> from io import StringIO

>>> from tokenize import (generate tokens, tok name)
>>>

>>> stringIO = StringIO('x =y + 4")

>>> for t in generate tokens(stringIO.readline):

print(tok name[t[0]], repr(t[1l]))

NAME 'x'
op '='
NAME 'y
op '+'
NUMBER '4'
NEWLINE '

ENDMARKER ''



Melbourne Bioinformatics

Python has a formal grammar

file: [statements] ENDMARKER
interactive: statement _newline
statements: statement+
statement: compound_stmt | simple_stmts
statement newline:

| compound_stmt NEWLINE

| simple_stmts

| NEWLINE

| ENDMARKER
... etcetera ...

see: https:/ /docs.python.org/3/reference /grammar.html



https://docs.python.org/3/reference/grammar.html

Melbourne Bioinformatics

Parsing produces an Abstract Syntax Tree

>>> from ast import (parse, dump)
>>> tree = parse('x =y + 4')
>>>

>>> dump(tree, annotate fields=False)

"Module([Assign([Name('x', Store())], BinOp(Name('y', Load()), Add(), Num(4)))])”
Module
|
Assign
/\
X Add
/\
y 73



Melbourne Bioinformatics

(CPython Bytecode

+ The Abstract Syntax Tree is translated (compiled) into
bytecode.

+ Bytecode is a collection of roughly 150 instructions for a
virtual machine.

- Each instruction consists of a single 8 bit (byte) opcode
followed by an optional 16 bit operand.



Melbourne Bioinformatics

(CPython Bytecode

An example bytecode instruction in binary:

01111100 0000000000000001
Opcode for the LOAD_FAST Operand (the integer 1)

bytecode instruction



Melbourne Bioinformatics
(CPython Bytecode

>>> from dis import dis
>>> def f(y):
X =y + 4

return x

>>> dis(f)

3 0 LOAD FAST 0 (y)
3 LOAD CONST 1 (4)
6 BINARY ADD
7 STORE_ FAST 1 (x)
5 10 LOAD FAST 1 (x)

13 RETURN_ VALUE

10



Melbourne Bioinformatics

(Python Bytecode

>>> from dis import dis
>>> def f(y):

c e X =y + 4

« oo return X

>>> dis(f)

0 (y)
1 (4)
1 (x)
10 LOAD FAST 1 (x)

13 RETURN VALUE

11



Melbourne Bioinformatics

(Python Bytecode

>>> from dis import dis
>>> def f(y):

c e X =y + 4

« oo return X

>>> dis(f)

3 OAD FAST
OAD CONST
INARY ADD
TORE_FAST

5 OAD FAST 1 (x)

ETURN VALUE

12



Melbourne Bioinformatics

(Python Bytecode

>>> from dis import dis
>>> def f(y):

c e X =y + 4

« oo return X

>>> dis(f)

3 0
3
6
7
5 10 1 (x)
13

13



Melbourne Bioinformatics

(Python Bytecode

>>> from dis import dis
>>> def f(y):

c e X =y + 4

« oo return X

>>> dis(f)

3 0 LOAD FAST (y)
3 LOAD CONST (4)
6 BINARY ADD
7 STORE FAST (x)
5 10 LOAD FAST (x)

13 RETURN VALUE

14



Melbourne Bioinformatics

(CPython Bytecode

+ Most bytecode instructions fall into one of the following four categories:
1. Control flow:

 JUMP_ABSOLUTE, RETURN_VALUE, POP_JUMP_IF_FALSE ...
2. Variable manipulation:

 LOAD_FAST, STORE_FAST, LOAD_GLOBAL, STORE_GLOBAL ...
3. Stack manipulation:

« ROT_TWO, POP_TOP, DUP_TOP ...
4. Primitive operations

* MAKE_FUNCTION, LOAD_ATTR, BUILD_LIST, BINARY_ADD...

15



Melbourne Bioinformatics

Compilation

Translates the Abstract Syntax Tree into bytecode
instructions for the CPython Virtual Machine.

Input is an Abstract Syntax Tree, output is a code
object.

The code object might be loaded directly into the
computer’s memory and interpreted immediately,
or it might be saved to file.

The .pyc files you see on your computer are just
serialised code objects.

16



Compi!

Melbourne Bioinformatics

Compilation

ation converts the nested tree structure of the

AST in

0 a linear sequence of instructions.

The linear sequence of instructions reflects the
sequential nature of program execution.

Code objects (such as those stored in .pyc files) are not
(supposed to be) portable across CPython versions.

17



Melbourne Bioinformatics

Execution

- Compiled CPython bytecode is executed by an interpreter which carries out the
behaviour of the Virtual Machine.

- In CPython, the bytecode interpreter is written in C (hence the name CPython).

- In addition to decoding and executing bytecode instructions, the interpreter
provides the following functionality:

- A stack for keeping track of local variables, intermediate values and control
flow.

- A heap for storing Python objects (pointed to by global variables and local
variables on the stack).

- Automatic memory management (called garbage collection).

Input and output via the operating system.

18



Melbourne Bioinformatics

Example execution

Python source

Constants Heap Globals Names

Bytecode 1

Stack




Melbourne Bioinformatics

Example execution

Python source

Constants Heap Globals Names

Bytecode 1

Stack




Melbourne Bioinformatics

Example execution

Python source

Constants Heap Globals Names

Bytecode 1

Stack




Melbourne Bioinformatics

Example execution

Python source

Constants Heap Globals Names

1

Bytecode

Stack




Melbourne Bioinformatics

Example execution

Python source

Constants Heap Globals Names

1

Bytecode

. -




Melbourne Bioinformatics

Example execution

Python source

Constants Heap Globals Names

Bytecode 1

Stack

. x




Melbourne Bioinformatics

Example execution

Python source Constants Heap Globals Names

0 0
Bytecode 1 1
Stack <




Melbourne Bioinformatics

Garbage collection

- Garbage collection (GC) identifies data in the interpreter
heap that is no longer reachable by the running
program.

+ Memory used by unreachable heap data is reclaimed by
GC for reuse.

- Without GC, heap usage would grow proportionally to
program running time and eventually exhaust available
virtual memory.

26



Melbourne Bioinformatics

Garbage collection

There have been lots of GC algorithms proposed for programming
languages.

CPython uses a very simple approach called reference counting.
Every heap object contains a reference counter.

The counter is incremented whenever a new pointer refers to the
object, and decremented when a pointer no longer refers to the
object.

[f the reference count reaches 0 then there are no longer any live
pointers to the object and it becomes garbage. Its heap memory can
be freed immediately.

27



Melbourne Bioinformatics

Garbage collection

Pros of reference counting:

simple to implement

easy to work with data from foreign code

memory is reclaimed immediately when an object becomes garbage
Cons of reference counting:

Each object requires a counter. For small objects this is proportionally quite a
large overhead in space.

Counter increments / decrements must be atomic operations to remain safe in a
multi-threaded computation.

Atomic operations are relatively expensive on modern CPUs.

This overhead would be paid even in sequential code!

28



Melbourne Bioinformatics

The Global Interpreter Lock

The CPython bytecode interpreter is protected by a Global
Interpreter Lock (GIL).

This prevents more than one OS thread from executing the
interpreter at any point in time 1n a given process.

This allows the interpreter to use non-atomic reference
count increment/decrements.

However, the GIL does not apply to foreign code called
from the bytecode interpreter: e.g. calls into C/Fortran/
whatever libraries that don’t call back into the interpreter.

29



Melbourne Bioinformatics

The Global Interpreter Lock

- A ”"workaround” for the GIL is provided by the
multiprocessing library.

- Each parallel instance is a separate OS process (multiple
independent CPython instances running at once).

- Communication between processes is done by
serialising / deserialising data.

30



Melbourne Bioinformatics

The Global Interpreter Lock

+ There have been many attempts to remove the GIL, but
they have usually penalised the performance of single-
threaded code. This has been considered untenable by
the CPython maintainers.

- However very recent work from Sam Gross (at
Facebook) called “nogil” shows very promising results.

31



Melbourne Bioinformatics

Other ways of implementing Python

- CPython is written in the C programming language.
- There are other alternative implementations of Python, such as:
- Jython (compiles to Java bytecode)
- PyPy (just-in-time compilation to machine code)
- IronPython (implemented in C#, runs on .NET)
- Shameless plug: blip (implemented in Haskell)
- https:/ / github.com /bjpop /blip

32



Melbourne Bioinformatics

Closing remarks on Python performance

+ Python is a pleasant language in many ways but it was
not designed with performance in mind.

+ The dynamic nature of Python (i.e. no static types)
means many operations are extremely slow compared to
what is possible in other languages.

+ Python can achieve good performance, but mostly by
calling into foreign code, e.g. C/Fortran libraries, as is
done in numpy for example.

33



