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How Python❉ works
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❉More specifically:  How the reference implementation of Python, known as CPython, works
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Outline

• Syntax analysis.

• Translation to bytecode.

• Execution.

• Other ways of implementing Python.
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CPython’s execution pipeline

interpretcompilelex parse

Python source code Effect on the world

tokens AST byte

code
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Lexical analysis

• Recognises the tokens of the language (strings, 
variables, numbers, punctuation, comments etcetera).


• Input is a sequence of characters, output is a sequence 
of tokens.
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Lexical analysis
>>> from io import StringIO


>>> from tokenize import (generate_tokens, tok_name)


>>>


>>> stringIO = StringIO('x = y + 4')


>>> for t in generate_tokens(stringIO.readline):


...     print(tok_name[t[0]], repr(t[1]))


...


NAME 'x'


OP '='


NAME 'y'


OP '+'


NUMBER '4'


NEWLINE ''


ENDMARKER ''
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Python has a formal grammar
file: [statements] ENDMARKER 


interactive: statement_newline 


statements: statement+ 


statement: compound_stmt  | simple_stmts 


statement_newline:


    | compound_stmt NEWLINE 


    | simple_stmts


    | NEWLINE 


    | ENDMARKER 

... etcetera …


see: https://docs.python.org/3/reference/grammar.html
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Parsing produces an Abstract Syntax Tree
>>> from ast import (parse, dump)


>>> tree = parse('x = y + 4')


>>>


>>> dump(tree, annotate_fields=False)


"Module([Assign([Name('x', Store())], BinOp(Name('y', Load()), Add(), Num(4)))])”
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CPython Bytecode

• The Abstract Syntax Tree is translated (compiled) into 
bytecode.


• Bytecode is a collection of roughly 150 instructions for a 
virtual machine.


• Each instruction consists of a single 8 bit (byte) opcode 
followed by an optional 16 bit operand.
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CPython Bytecode

An example bytecode instruction in binary:


    


   01111100        0000000000000001
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Opcode for the LOAD_FAST

bytecode instruction

Operand (the integer 1)
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CPython Bytecode
>>> from dis import dis


>>> def f(y):


...     x = y + 4


...     return x


... 


>>> dis(f)


  3           0 LOAD_FAST                0 (y)


              3 LOAD_CONST               1 (4)


              6 BINARY_ADD          


              7 STORE_FAST               1 (x)


  5          10 LOAD_FAST                1 (x)


             13 RETURN_VALUE        
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CPython Bytecode
>>> from dis import dis


>>> def f(y):


...     x = y + 4


...     return x


... 


>>> dis(f)


  3           0 LOAD_FAST                0 (y)


              3 LOAD_CONST               1 (4)


              6 BINARY_ADD          


              7 STORE_FAST               1 (x)


  5          10 LOAD_FAST                1 (x)


             13 RETURN_VALUE        
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Source code line 
numbers.
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>>> from dis import dis


>>> def f(y):


...     x = y + 4


...     return x


... 


>>> dis(f)


  3           0 LOAD_FAST                0 (y)


              3 LOAD_CONST               1 (4)


              6 BINARY_ADD          


              7 STORE_FAST               1 (x)


  5          10 LOAD_FAST                1 (x)


             13 RETURN_VALUE        

CPython Bytecode
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Bytecode 
instruction offsets.
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>>> from dis import dis


>>> def f(y):


...     x = y + 4


...     return x


... 


>>> dis(f)


  3           0 LOAD_FAST                0 (y)


              3 LOAD_CONST               1 (4)


              6 BINARY_ADD          


              7 STORE_FAST               1 (x)


  5          10 LOAD_FAST                1 (x)


             13 RETURN_VALUE        

CPython Bytecode
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Instruction 
Opcodes.
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>>> from dis import dis


>>> def f(y):


...     x = y + 4


...     return x


... 


>>> dis(f)


  3           0 LOAD_FAST                0 (y)


              3 LOAD_CONST               1 (4)


              6 BINARY_ADD          


              7 STORE_FAST               1 (x)


  5          10 LOAD_FAST                1 (x)


             13 RETURN_VALUE        

CPython Bytecode
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Instruction 
Operands.
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CPython Bytecode
• Most bytecode instructions fall into one of the following four categories:


1. Control flow:


• JUMP_ABSOLUTE, RETURN_VALUE, POP_JUMP_IF_FALSE …


2. Variable manipulation:


• LOAD_FAST, STORE_FAST, LOAD_GLOBAL, STORE_GLOBAL …


3. Stack manipulation:


• ROT_TWO, POP_TOP, DUP_TOP …


4. Primitive operations


• MAKE_FUNCTION, LOAD_ATTR, BUILD_LIST, BINARY_ADD…
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Compilation
• Translates the Abstract Syntax Tree into bytecode 

instructions for the CPython Virtual Machine.


• Input is an Abstract Syntax Tree, output is a code 
object.


• The code object might be loaded directly into the 
computer’s memory and interpreted immediately, 
or it might be saved to file.


• The .pyc files you see on your computer are just 
serialised code objects.
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Compilation

• Compilation converts the nested tree structure of the 
AST into a linear sequence of instructions.


• The linear sequence of instructions reflects the 
sequential nature of program execution.


• Code objects (such as those stored in .pyc files) are not 
(supposed to be) portable across CPython versions.

17



Melbourne Bioinformatics

Execution
• Compiled CPython bytecode is executed by an interpreter which carries out the 

behaviour of the Virtual Machine.


• In CPython, the bytecode interpreter is written in C (hence the name CPython).


• In addition to decoding and executing bytecode instructions, the interpreter 
provides the following functionality:


• A stack for keeping track of local variables, intermediate values and control 
flow. 


• A heap for storing Python objects (pointed to by global variables and local 
variables on the stack). 


• Automatic memory management (called garbage collection). 


• Input and output via the operating system. 
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Example execution
y = 2

x = y + 4

Python source

LOAD_CONST 0

STORE_NAME 0

LOAD_NAME 0

LOAD_CONST 1

BINARY_ADD

STORE_NAME 1


Bytecode

2

4

"y"

"x"

Constants Heap Globals Names

0

1

0

1

Stack
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Example execution
y = 2
x = y + 4

Python source

LOAD_CONST 0

STORE_NAME 0

LOAD_NAME 0

LOAD_CONST 1

BINARY_ADD

STORE_NAME 1


Bytecode

2

4

"y"

"x"

Constants Heap Globals Names

0

1

0

1

Stack
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Example execution
Python source

LOAD_CONST 0

STORE_NAME 0

LOAD_NAME 0

LOAD_CONST 1

BINARY_ADD

STORE_NAME 1


Bytecode

2

4

"y"

"x"

Constants Heap Globals Names

0

1

0

1

Stack

"y"
y = 2

x = y + 4
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Example execution
Python source

LOAD_CONST 0

STORE_NAME 0

LOAD_NAME 0

LOAD_CONST 1

BINARY_ADD

STORE_NAME 1


Bytecode

2

4

"y"

"x"

Constants Heap Globals Names

0

1

0

1

Stack

"y"
y = 2

x = y + 4
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Example execution
Python source

LOAD_CONST 0

STORE_NAME 0

LOAD_NAME 0

LOAD_CONST 1

BINARY_ADD

STORE_NAME 1


Bytecode

2

4

"y"

"x"

Constants Heap Globals Names

0

1

0

1

Stack

"y"
y = 2

x = y + 4
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Example execution
Python source

LOAD_CONST 0

STORE_NAME 0

LOAD_NAME 0

LOAD_CONST 1

BINARY_ADD

STORE_NAME 1


Bytecode

2

4

"y"

"x"

Constants Heap Globals Names

0

1

0

1

Stack

"y"
y = 2

x = y + 4
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Example execution
Python source

LOAD_CONST 0

STORE_NAME 0

LOAD_NAME 0

LOAD_CONST 1

BINARY_ADD

STORE_NAME 1


Bytecode

2

4

"y"

"x"

Constants Heap Globals Names

0

1

0

1

Stack

"y"

6

"x"

y = 2

x = y + 4
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Garbage collection

• Garbage collection (GC) identifies data in the interpreter 
heap that is no longer reachable by the running 
program.


• Memory used by unreachable heap data is reclaimed by 
GC for reuse.


• Without GC, heap usage would grow proportionally to 
program running time and eventually exhaust available 
virtual memory.
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Garbage collection
• There have been lots of GC algorithms proposed for programming 

languages.


• CPython uses a very simple approach called reference counting.


• Every heap object contains a reference counter.


• The counter is incremented whenever a new pointer refers to the 
object, and decremented when a pointer no longer refers to the 
object.


• If the reference count reaches 0 then there are no longer any live 
pointers to the object and it becomes garbage. Its heap memory can 
be freed immediately.
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Garbage collection
• Pros of reference counting:


• simple to implement


• easy to work with data from foreign code


• memory is reclaimed immediately when an object becomes garbage


• Cons of reference counting:


• Each object requires a counter. For small objects this is proportionally quite a 
large overhead in space.


• Counter increments/decrements must be atomic operations to remain safe in a 
multi-threaded computation. 


• Atomic operations are relatively expensive on modern CPUs. 


• This overhead would be paid even in sequential code!
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The Global Interpreter Lock
• The CPython bytecode interpreter is protected by a Global 

Interpreter Lock (GIL).


• This prevents more than one OS thread from executing the 
interpreter at any point in time in a given process.


• This allows the interpreter to use non-atomic reference 
count increment/decrements.


• However, the GIL does not apply to foreign code called 
from the bytecode interpreter: e.g. calls into C/Fortran/
whatever libraries that don’t call back into the interpreter.
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The Global Interpreter Lock

• A “workaround” for the GIL is provided by the 
multiprocessing library.


• Each parallel instance is a separate OS process (multiple 
independent CPython instances running at once).


• Communication between processes is done by 
serialising/deserialising data.
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The Global Interpreter Lock

• There have been many attempts to remove the GIL, but 
they have usually penalised the performance of single-
threaded code. This has been considered untenable by 
the CPython maintainers.


• However very recent work from Sam Gross (at 
Facebook) called “nogil” shows very promising results.
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Other ways of implementing Python

• CPython is written in the C programming language.


• There are other alternative implementations of Python, such as:


• Jython (compiles to Java bytecode)


• PyPy (just-in-time compilation to machine code)


• IronPython (implemented in C#, runs on .NET)


• Shameless plug: blip (implemented in Haskell) 


• https://github.com/bjpop/blip
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Closing remarks on Python performance

• Python is a pleasant language in many ways but it was 
not designed with performance in mind.


• The dynamic nature of Python (i.e. no static types) 
means many operations are extremely slow compared to 
what is possible in other languages.


• Python can achieve good performance, but mostly by 
calling into foreign code, e.g. C/Fortran libraries, as is 
done in numpy for example.

33


