Introduction to Unix

Bernie Pope (bjpope@unimelb.edu.au)
Victorian Life Sciences Computation Initiative.

Introduction
About this document
Audience and purpose
Typographic conventions
History and philosophy of Unix
Login and logout
Remote login
SSH login from Windows
SSH login from Mac OS X and Linux
Logout
The shell and the command line
An example command
Command history
Command editing
Tab completion
Getting help
The Unix manual
Other sources of help
The file system
The home directory
The working directory
File paths
Special file path names
Listing the contents of a directory
Hidden files
Changing the working directory
Making directories
Copying and moving (renaming) files
Removing files and directories
File permissions
Changing the permissions on a file
Changing the group of a file
How to keep your files private
File name patterns

Copying files between machines
Working with files
File types
Displaying the contents of files
Searching for patterns in files
Comparing files for differences
Editing files
Other handy commands which operate on files
Processes
Programs and the search path
Process management
Job control
Terminating processes
Standard input and output
Output redirection
Pipes
Shell scripting
Command summary

Introduction

About this document

Audience and purpose

This document was written primarily as a source of information for VLSCI users who are new
to Unix, however the concepts are applicable to a much wider audience. A small number of
points are specific to our systems, but most of the document applies to any computer running
a version of Unix.

The aims of the document are twofold:

1. To help you become a productive Unix user.
2. To show you the “Unix Way”, so that you can go off and discover the rest of the
system on your own.

It is impossible for a such a short document to explain the entirety of Unix, so we focus on the
key issues from a user’s perspective. We make no attempt to be exhaustive in our
explanations, instead we prefer to use examples to demonstrate how things work. We hope
that you will experiment on your own, and where necessary, follow up a topic with further

reading on the internet, in a book, or in the online Unix manual.

Typographic conventions

In this document textual interaction with the computer is indicated by like so:

e Input from the user is in black font.
® Output from commands is in red font.
e The shell command prompt is in blue font.

We use an ellipsis (. . .) to indicate places where the output of a command has been
truncated for brevity.

History and philosophy of Unix

Unix was created at AT&T Bell labs in 1969 following the more ambitious, but less successful,
MULTICS project. The popularity of the system grew quickly, especially at universities,
because it was cheap, portable, and because the entire source code was provided to users.
During the 1980s and 1990s several commercial implementations of Unix were created,
particularly for the domain of high-end scientific workstations. The proliferation of many
different versions of Unix prompted various standardisation efforts, most notably the Portable
Operating Systems Interface (POSIX). Increasingly restrictive software licences and legal
battles over Unix prompted the creation of the GNU project (GNU’s Not Unix) to make an
operating system based on the philosophy of free and open software. In the early 1990s an
open source kernel, called Linux, was created for IBM PC compatible computers. The
combination of this kernel with the tools created by the GNU project led to the GNU/Linux
operating system, which is now one of the most widely used Unix-like systems in the world. In
recent times GNU/Linux has been ported to a wide variety of systems; everything from
wristwatches to supercomputers. It is also worth noting that Unix is the foundation of the
Apple Mac OS X operating system, and thanks to POSIX, the standard suite of Unix tools is
also available on that platform.

Unix remains popular after 40 years, especially in scientific computing, because of its
robustness and flexibility. From the very beginning it was designed to support multiple users
running multiple tasks concurrently, which means that security and stability are key parts of its
design. The flexibility of Unix comes from a philosophy of building complex systems as
compositions of smaller and simpler tools. Unix has accumulated a large suite of small
programs which “do one thing and do it well”, and which adhere to a common interface. This
enables users to build their own custom tools by simply plugging existing ones together. It is
this inherent programmability which makes Unix adaptable to a wide range of computing
tasks, and it is the reason that Unix users continue to favor the command line interface, even
when graphical user interfaces are commonplace on modern computers.

Login and logout

Remote login

A remote login is a connection between your personal computer and another computer via a
network (normally the internet). Your computer is local and the other computer is remote. In
the case of VLSCI, the remote system will be one of our supercomputers. A remote log in
allows you to type commands into your computer and have them execute on the remote
system, with the results displayed on your screen.

‘ - >
)‘_\ network

@l

your computer (local)

super computer (remote)

There are a few ways to remotely login to a Unix computer, but at VLSCI we require you to
use the Secure Shell (ssh). It is secure because it encrypts all the data sent between the
connected computers, which, amongst other things, prevents eavesdroppers from seeing your
password in plain text.

In order to use ssh you must run an ssh client on your computer and tell it the hostname of
the remote computer. These are the hostnames of the supercomputers at VLSCI:

e avoca.visci.unimelb.edu.au
e merri.vlsci.unimelb.edu.au
e bruce.visci.unimelb.edu.au

Avoca is an IBM BlueGene/Q whereas Merri and Bruce are x86 clusters. More information
about these machines is available on this web page:

http://www.vlsci.org.au/page/computer-software-configuration

There are a variety of ssh clients available depending on which operating system you use; we
show how to use ssh clients on Windows, OS X and Linux below.

SSH login from Windows

http://www.google.com/url?q=http%3A%2F%2Ftambo.vlsci.unimelb.edu.au&sa=D&sntz=1&usg=AFQjCNG6pz8mkHRAA5AkX0Hg3AKQQWilyg
http://www.google.com/url?q=http%3A%2F%2Fmerri.vlsci.unimelb.edu.au&sa=D&sntz=1&usg=AFQjCNEFegXaHMvoGJKLmX_XkATrXkB5UA
http://www.google.com/url?q=http%3A%2F%2Fbruce.vlsci.unimelb.edu.au&sa=D&sntz=1&usg=AFQjCNFyeXOfQQuPrhZ_AB-M-slf18xdtw
http://www.google.com/url?q=http%3A%2F%2Fwww.vlsci.org.au%2Fpage%2Fcomputer-software-configuration&sa=D&sntz=1&usg=AFQjCNExxG2Dsf1790gtjMrYOwKB3JZe2g

On Microsoft Windows (95, 98, 2000, XP, Vista, 7) we recommend that you use the PuTTY
ssh client. PUTTY (putty.exe) can be downloaded from this web page:

http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html

Documentation for using PuTTY is here:

http://www.chiark.greenend.org.uk/~sgtatham/putty/docs.html

When you start PUTTY you should see a window which looks something like this:

ﬁ PuTTY Configuration
Category
= Session Basic options for your PuTTY session
Logang Specify the destination you want to connect to
& Teminal Host Name for IP address) Pot
Keyboard ost Name {or IP address) B
Bl ‘ 2
Features Connection type:
Window QORany OTelnet ORogn @ SSH O Sepial
—ppaé mmmmm Load, save or delete a stored session
Behaviour
Translation Saved Sessions
Selection
Colaurs i
Default Settings
& Conrecton
Fraxy
Rlogin
- SSH
Seral Close windo on s
O Aways O MNever () Only on clean ext
od o

To connect to one of the computers at VLSCI you should enter its hostname into the box
entitled “Host Name (or IP address)”, then click on the Open button. All of the settings should
remain the same as they were when PuTTY started (which should be the same as they are in
the picture above).

In some circumstances you will be presented with a window entitled PuTTY Security Alert. It
will say something along the lines of “The server’'s host key is not cached in the registry”. This
is nothing to worry about, and you should agree to continue (by clicking on Yes). You usually
see this message the first time you try to connect to a particular remote computer.

If all goes well, a terminal window will open, showing a prompt with the text “login as:”. An
example terminal window is shown below. You should type your VLSCI username and press
enter. After entering your username you will be prompted for your password. Assuming you
type the correct username and password the system should then display a welcome
message, and then present you with a Unix prompt. If you get this far then you are ready to
start entering Unix commands and thus begin using the remote computer.

http://www.google.com/url?q=http%3A%2F%2Fwww.chiark.greenend.org.uk%2F~sgtatham%2Fputty%2Fdownload.html&sa=D&sntz=1&usg=AFQjCNFQ2hd__UNHkWv-OIsPy2eENnOjrQ
http://www.google.com/url?q=http%3A%2F%2Fwww.chiark.greenend.org.uk%2F~sgtatham%2Fputty%2Fdocs.html&sa=D&sntz=1&usg=AFQjCNEje1-Aobwmg6m6udd-DzxUnjIbqA

@ merri.visci.unimelb.edu.au - PUuTTY E]@

SSH login from Mac OS X and Linux

Both Mac OS X and Linux come with a version of ssh (called OpenSSH) that can be used
from the command line. To use OpenSSH you must first start a terminal program on your
computer. On OS X the standard terminal is called Terminal, and it is installed by default. On
Linux there are many popular terminal programs including: xterm, gnome-terminal, konsole (if
you aren’t sure, then xterm is a good default). When you’ve started the terminal you should
see a command prompt. To log into Merri, for example, type this command at the prompt and
press return (where the word username is replaced with your VLSCI username):

ssh username@merri.vlsci.unimelb.edu.au

The same procedure works for avoca and bruce, or any other machine where you have an
account.

You may be presented with a message along the lines of:

The authenticity of host 'merri.vlsci.unimelb.edu.au
(128.250.166.34)' can't be established.

Are you sure you want to continue connecting (yes/no)?

Although you should never ignore a warning, this particular one is nothing to be concerned
about; type yes and then press enter. If all goes well you will be asked to enter your
password. Assuming you type the correct username and password the system should then
display a welcome message, and then present you with a Unix prompt. If you get this far then
you are ready to start entering Unix commands and thus begin using the remote computer.

Logout

http://www.google.com/url?q=http%3A%2F%2Fmerri.vlsci.unimelb.edu.au&sa=D&sntz=1&usg=AFQjCNEFegXaHMvoGJKLmX_XkATrXkB5UA

When you have finished using the remote computer you can terminate your connection with
the logout command, or simply quit your ssh client.

The shell and the command line

When you login to a Unix machine you are confronted with a prompt: a short piece of text
indicating that the system is ready for you to type a command. The prompt on Merri (a
computer at VLSCI) might look like this:

[username@merri ~]1$

where the word username is replaced by your actual username on the system. The content
of the prompt is configurable, and it might be different on other systems that you encounter. In
this document, for simplicity, we show the prompt as a single dollar sign ($).

The command line itself is provided to you by a program called the shell. The shell acts as an
intermediary between you and the underlying operating system. Each time you enter a
command, the shell parses it and then asks the system to carry it out. The shell is also
programmable, which means you can automate sequences of commands that would be
tedious to enter manually. Most Unix systems provide several alternative shells for you to use,
but most GNU/Linux systems use the BASH shell as the default. This document assumes you
are using BASH, but most of the examples should work equally well in other shells.

The diagram below shows how the shell relates to various other components in a computer
system:

At the bottom of the diagram sits the computer hardware. Immediately above the hardware is
a software abstraction called an operating system kernel. The kernel is a piece of software

which manages the resources of the computer (disk drives, screen, keyboard etcetera) and
makes them available to your programs. User applications sit on top of the stack, and
interface with the hardware via the kernel. The shell is just an ordinary user application that
happens to provide a convenient command interpreter.

It should be noted that users can interact with Unix in other ways besides the shell. Graphical
user interfaces (GUIs) are also available, and most users run a shell inside a GUI window
nowadays. Nonetheless, this document focuses on the shell because its programmability
offers productivity gains unrivalled by other interfaces.

An example command

Here’s a simple example command to get you started. Type the following command into the
shell and press enter:

$ date
Tue Mar 6 21:05:56 EST 2012

As you can see the output of the command is the current local date and time.

Note that once the previous command has completed the shell displays a new prompt
indicating that it is ready for the next command to be entered.

Many Unix commands accept arguments (sometimes called flags) which request specific
features to be activated. For example you can ask the date command to produce its output in
Coordinated Universal Time (UTC) like so:

$ date -u
Tue Mar 6 10:06:14 UTC 2012

It is not uncommon for a command to accept many different arguments, and, in most cases,
more than one argument can be supplied at the same time. Arguments are separated by one
or more space characters and they are usually case-sensitive.

How do you find out what arguments are accepted by a command? In the case of date you
can pass it the --help argument and it will print out some usage information, but
unfortunately not all commands behave the same way. This is related to the more general
question about how to get help about using a Unix system, which we cover in more detail in
the section entitled Getting Help later in this document.

Command history

A convenient feature of the shell is that it keeps a record of the most recent commands that

you have entered. It is often the case that previous commands are repeated in the near
future. You can go back to previous commands by using the up-arrow key (and forwards with
the down-arrow key). The command history saves you from typing it all in again each time,
which is very useful when the command was large.

You can also view your most recent commands with history:
$ history
980 1s -1la
981 ./myprog
992 man awk

Each command in the history is numbered and the shell lets you run the command again by
prefixing its number with an exclamation mark. For example, the command “! 980" would
cause “1s -1a” to be run again.

Command editing

The command line can be edited in a number of ways:

Forward and back arrows move the cursor left and right.

The delete key erases the character to the left of the cursor.
Control-k deletes everything from the cursor to the end of the line.
Control-u deletes everything from the cursor to the start of the line.
Control-e moves the cursor to the end of the line.

Control-a moves the cursor to the start of the line.

Control-r searches in reverse through the history.

Tab completion
Pressing the tab key causes the shell to expand the text sitting just prior to the cursor:
If zero names match then nothing happens.
If exactly one file name matches then the text is expanded to that name.
If more than one file name matches then a list of matching names will be displayed.

You will need to type one or more characters to disambiguate before pressing tab to
continue the completion.

Getting help

One of the biggest problems facing a new Unix user is the sheer volume of commands

10

available. One of the downsides of the command line compared to a graphical interface is that
there is no ordered searchable menu. Even if you know that a command exists you still may
not know how to use all its features. So how do you discover new commands, and how do
you learn how to use existing ones?

The Unix manual

The traditional approach is to use the built in Unix manual, which is provided by the man
command:

$ man time
(use the arrow keys to move up and down and q to quit the manual).

The manual has an entry for most of the standard Unix commands and for some of the less
common ones too. It even has an entry for itself:

$ man man
You can search for articles in the manual by keyword using the -k argument:
$ man -k compiler

fort77 (1p) - FORTRAN compiler (FORTRAN)

gcc (1) - GNU project C and C++ compiler
zic (8) - time zone compiler

Most keyword searches in the manual return large lists of results (we show only a small part
of the output above), so you will need to spend some time sifting through them to find the
command you are looking for.

The Unix manual is divided into multiple sections and a given command could appear in many
different sections. In the output of man -k above you will see numbers in parentheses, which
indicate the section of the manual referred to by a particular entry. If you want to look at a
specific section of the manual then you need to provide the section name as an argument.

Compare the results of these two commands:

$ man 1 cp
$ man 1lp cp

11

Other sources of help

In truth the Unix manual is not particularly friendly to beginners and you’d be excused for
trying to look elsewhere for help.

Nowadays there is a wealth of information about Unix on the Internet. In fact there is so much
information that it is hard to know where to look, although a well constructed Google search
can help you narrow down the results. Sometimes nothing beats a good old-fashioned
textbook, and there are plenty to choose from. A popular choice for beginners is Learning the
UNIX Operating System by Peek, Todino-Gonguet and Strang.

If you are a VLSCI user then you can always ask us for help in a number of ways:

Come over to our offices and speak to someone in person.

Write your question in an email and send it to help@vlsci.org.au

Post the question on our forum and see if another one of our users has a solution for
you: https://help.visci.unimelb.edu.au/forum/

The file system

Unix provides a file system to store and organise data which resides on permanent storage
such as disk drives (the actual storage media could be any technology). The file system
consists of directories and files. If you are a Windows or Mac user, directories represent the
same concept as folders on those systems. Files contain data and programs, and directories
contain files and possibly other directories, thus forming a hierarchy. At the top of the
hierarchy is the root directory, which is usually denoted by forward-slash character (/).

The diagram below illustrates a small part of a typical Unix file system, rendered as an upside
down tree (the root is at the top and the branches extend downwards). The example is for
illustrative purposes only, the file system on a real computer would contain many more files
and directories.

mailto:help@vlsci.org.au
https://www.google.com/url?q=https%3A%2F%2Fhelp.vlsci.unimelb.edu.au%2Fforum%2F&sa=D&sntz=1&usg=AFQjCNFwZsjGsJ9gTOWpnpJbIu4LWsDTnQ

12

arch | | date | | zcat /ﬁ.

dc perl | | who

‘mydisk‘ ‘ whatson ‘

In the diagram directories are indicated by red ellipses and files are indicated by yellow
rectangles. Note that directories may contain other (sub) directories and also files, and
directories can be empty too. The names of the files and directories have been chosen from a
real system, but they are not significant in this discussion. However, there are a few things to
note about names in general:

1. The syntax for names does not distinguish between directories and files.

2. Names do not have to be unique. In the example above there are three directories with
the name bin.

3. On most Unix systems file names are case sensitive.

4. Filenames may contain space characters, but this practice is often discouraged
because some older Unix tools don’t handle them well.

As we shall see shortly, Unix provides a naming scheme called file paths which
accommodates duplicate names but allows us to refer to things unambiguously.

The home directory

Each user has their own private directory called their home, where they can store their own
files and subdirectories. You can discover the name of your home directory with the following
command:

$ echo $HOME
/home/username

The exact location of your home directory will vary from system to system, but it will usually
end in your username.

The working directory

The working directory indicates the place in the file system where you are working. Many

13

commands operate on files in the working directory by default unless you specify otherwise.
When you first log into the computer your working directory is set to be your home directory.
You can discover the name of the working directory with the pwd command (for “print working
directory”):

$ pwd
/usr/local/bin

You can change the working directory with the ecd command (more on this later).

File paths

A file path identifies files and directories within the context of the file system hierarchy. They

are called “paths” because they are written as a sequence of steps between two places. The
steps indicate which directories you must traverse to get from the start to the end of the path.
There are two basic forms of file paths, distinguished by where they start:

1. Absolute file paths: start at the root directory, for example: /usr/local/bin
2. Relative file paths: start at the working directory, for example: src/C/Makefile (note
the absence of a forward-slash at the start of the path).

Unix uses the forward-slash character as a path separator. The notation D/F indicates that F
is contained in the directory D. The root directory is just a special case with nothing on the left
of the slash.

Consider this absolute path as an example:
/usr/local/bin/whatson

usr is a directory contained in the / (root) directory.

local is a directory contained in the /usr directory.

bin is a directory contained in the /usr/local directory.

whatson is a file (or perhaps a directory) contained in the /usr/local/bin
directory.

Relative file paths are interpreted by appending them onto the working directory. For example,
suppose we have the following relative path:

src/fractal.c
If the working directory is:

/home/username

14

then the absolute path of the file would be:
/home/username/src/fractal.c

Absolute paths unambiguously refer to a particular file or directory on the system, but they
can become quite long and thus tedious to type. Relative paths are interpreted with respect to
the working directory, which means that they are usually short. Indeed, the relative path of
any file in your working directory is just the name of the file on its own - it couldn’t be any
shorter than that!

Special file path names

Unix also provides a few shorthand notations for certain paths:

e The tilde character (~) refers to your home directory, for example:
~/src/fractal.c
is equivalent to:
/home/username/src/fractal.c
if your home directory is:
/home/username/

e The single dot (.) refers to the working directory, for example:
./README. txt
is equivalent to:
README . txt

e The double dot (. .) refers to the parent directory, for example:
../ ../sequences. txt
refers to the file sequences. txt in the parent of the parent (i.e. grandparent) of the
working directory.

Listing the contents of a directory

The contents of a directory can be listed with the 1s command (lower case LS). In its simplest
form it lists the names of the immediate contents of the working directory in alphabetical
order:

$ 1s
aadvark.c a.out data memo.txt =zebra.hs

You can ask 1s to give you a longer, more detailed listing, by passing it the -1 (lower case L,
for “long”) argument:

15

$ 1s -1

total 88

-rw-r--r-- 1 foo staff 94 Feb 9 9:24 aadvark.c
-rwxr-xr-x 1 foo staff 6713 Mar 9 15:24 a.out
drwxr-xr-x 2 foo guest 4096 Mar 9 15:21 data
-rw-r--r-- 1 fred student 43 Jan 12 20:26 memo.txt
-rw-r--r-- 1 wilma student 12 Sep 19 2011 zebra.hs

The text “total 88” means that the current directory consumes 88 disk blocks, which says
something about how much space it requires. This is a low-level detail that is not particularly
important for the current discussion.

Next we see a list of information about five files. There are nine columns in each line which
provide the following details:

Permissions of the file (who can read/write/execute it), e.g. ~rwxr-xr-x
Number of links to the file (refer to information about file system links), e.g. 2
Name of the user who owns the file, e.g. fred

Name of the user group associated with the file, e.g. student

Size of the file in bytes, e.g. 43

. Date/time that the file was last changed, e.g. Mar 9 15:24

Name of the file or directory, e.g. memo. txt

arwnN-=~

@
©

The 1s command accepts an optional list of file paths as arguments. This allows you to list
the contents of the named directories rather than just the working directory. For example:

$1ls ~/bin
c2hs killmyjobs.sh

Hidden files

By default the 1s command does not display information about files whose names start with a
dot character (these are often called dot-files). If you want to see those files then you can use
the -a argument to list all files. The most common place to find dot-files is in your home
directory. These are often configuration files that control the behaviour of programs that you
use. For example, the file ~/ .bashrec contains configuration options for the BASH shell.

Changing the working directory

When you log into a Unix computer your working directory is set to your home directory. You
can change the working directory with the ed command (for “change directory”):

16

$ cd /usr/local/

The ed command accepts a file path as its argument, which specifies the new desired value
of the working directory. The command will fail if the directory does not exist or you don’t have
permission to read it. If you run the ed command without any arguments then it will set the
working directory to your home directory.

Making directories

You can create your own directory using the mkdir command:
$ mkdir test

The mkdir command accepts one or more file paths as its arguments which specify the
names of the directories that you want to create. It will fail to create a directory if it already
exists or if you have insufficient permissions.

Copying and moving (renaming) files
You can copy one or more files from one place in the file system to another using the cp
command:

$ cp .bashrc .bashrc.backup

The above example copies the file .bashrc to .bashrc.backup (and does not change
.bashrc).

The file(s) being copied are called sources and the place being copied to is called the
destination. If there is one source then the destination could be either a file or a directory, but
if there are multiple sources then the destination must be a directory (because it is not
possible to copy multiple files into a single file). If the destination is a directory then the
sources are copied into the directory keeping their original names.

The e¢p command will not copy directories by default, but this can be overridden with the -R
flag, which will cause cp to copy the contents of a directory recursively (that is the directory
will be copied, plus all its files and subdirectories transitively).

You can move (rename) a file or a directory using the mv command:

$ mv .bashrc .bashrc.old

The above example renames the file .bashrc to the new name .bashrc.old.

Removing files and directories

You can remove files with the rm command and remove directories with the rmdir
command.

The following command will remove the file called .bashrc.backup from the working
directory:

$ rm .bashrc.backup
The following command will remove the directory called test from the working directory:
$ rmdir test

Note that rmdir only removes empty directories. If you want to recursively remove a directory
and all its files (and subdirectories and so on) then you can pass the -r argument to rm:

$ rm -r test

File permissions

Every file and directory in the file system has permission attributes which specify whether the
file may be read, written (modified) or executed by certain classes of users. The precise
meaning of read, write and execute is explained by the table below (note the differences
between files and directories):

read write execute

file

Contents of file may
be viewed.

Contents of file may
be changed.

File may be
executed as a
program.

18

directory

A list of the directory
contents may be
viewed (i.e. user can
1s the directory).

User may create and
remove files in the
directory.

The directory may be
traversed by the user
(i.e. user may cd
into the directory).

The permissions are further divided into three categories of users:

1. The owner of the file.
2. The user group associated with the file.
3. All other users on the computer.

The owner of the file is normally the user who created it.

Each user belongs to one or more groups on the system. This provides a simple way to share
files with a limited selection of users. You can find out which groups you are in with the groups
command:

$ groups
guest tutorial printer

By setting the group permissions on files appropriately you can share them with other users
on the system in the same group. Unfortunately each file can only have a single group at any
one time, even though each user can belong to many groups.

The “other users” permissions apply to anyone who is not the owner of the file and not a
member of the group of the file, in other words everyone else.

Recall from above that the output of the command 1s -1 shows, amongst other things, the
permissions of the files in a directory, written as a ten character string like so:

—rwXr—-xX——-—
The meaning of each of the ten characters from left to right is as follows:
1. File type. Dash (-) means it is a regular file, (d) means it is a directory.
2-4. Owner read (r), write (w), execute (x).
5-7. Group read (r), write (w), execute (x).

8-10. Other read (x), write (w), execute (x).

A dash (-) in any of the read, write or execute positions means that the corresponding
permission is denied.

The example -rwxr-x--- can be decoded like so:

It is a regular file (first character is a dash).
The owner of the file can read, write and execute it (characters 2-4 are rwx).
Any user in the group of the file can read and execute it, but they cannot write it
(characters 5-7 are r-x).

e Everyone else who is not the owner of the file and not in the group of the file cannot
read, write or execute it (characters 8-10 are ---).

Changing the permissions on a file

You can change the permissions of a file or directory using the chmod command. For
example to add group read and write permissions to the file fractal.c we could use the
command:

$ chmod g+rw fractal.c

The syntax of the chmod command is complicated, but basically it follows the pattern:
chmod user-code operator permission-string files

where:

e user-code is one of u,g,0,a
o u:the owner of the file.
o g :any userin the group of the file.
o o :any user who is not the owner and not in the group of the file.
o a:allusers.
e operator is one of +,-,=
o +:add these new permissions to the current permissions for the file.
o : remove these permissions from the current permissions of the file.
o =:setthese permissions of the file to be exactly these ones specified (but all
other permissions remain unchanged).
e permission-string is some combination of r,w,x

More example uses of chmod:
e Add read and execute permissions for everyone to the file myprog:

$ chmod a+rx myprog

19

20

e Remove read permissions for anyone who is neither the owner of, nor in the group of
the file myprog:

$ chmod o-r myprog

e Set the permissions of the file myprog to be read and execute to the owner (and leave
the permissions of other users unchanged):

$ chmod u=rx myprog

The chmod command accepts a -R argument which causes it to recursively change the
permissions in all the files and subdirectories of a specified directory, for example:

$ chmod -R g+rw my data files

Changing the group of a file

You can change the group of a file or directory with the chgrp command, for example:
$ chgrp guest fractal.c

The first argument is the new group name and the rest of the arguments are the files and/or
directories that you want to change.

The chgrp command accepts a -R argument which causes it to recursively change the group
in all the files and subdirectories of a specified directory, for example:

$ chgrp -R staff my data files

How to keep your files private

It is important to know how to keep your confidential data private, but as you can see from the
discussion above, Unix file permissions can be complicated.

At VLSCI we have hundreds of users and most of them are working on research projects. Due
to the nature of their work, our users typically want to share data with people in their research
project but hide it from everyone else. To facilitate this, on our systems, each user belongs to
one or more projects, and each project has a corresponding Unix group of the form VRwxyz,
where wxyz is a unique four digit number, for example VR1234.

For research related data, we recommend that you only provide read and write access to the
owner of the file (that is you) and the group of the file (which should be your research group).
You should also restrict execute permissions on directories to the owner and group. Or in
summary, the permissions string on confidential files and directories should have three

21

dashes (---) on the far right hand side. An easy way to ensure this is set for a directory
called, say my data, is to use this command:

$ chmod -R ug=rwX,o= my data

This recursively sets the permissions on files to be readable and writable to the owner and
group but not to anyone else. Note carefully that the X is a capital letter. This is a special
feature of chmod which sets the execute permissions on files and directories which were
already executable to some user (this ensures that execute permissions are given to
directories and programs but not to normal files).

If you belong to multiple projects then you have to be careful which group is set for your files
and directories.

File name patterns

In many circumstances you find yourself wanting to run the same command on a large
collection of files whose names match a certain pattern. For instance you might like to remove
group read permissions on all (and only) those files ending in “. txt”. If there are lots of files
that match the pattern then it is unlikely you will want to enter the same command once for
every file. Fortunately the shell provides a concise language of patterns which solve this
problem:

$ chmod g-r *.txt
In the example above we have used the pattern * . txt to match any file name which ends in
the four characters “. txt” (which includes files with no characters to the left of the dot). The
shell automatically replaces any pattern in a command with all of the file names it finds which
match the pattern.
There are many things you can do with file name patterns, but the two key operators you
need to know are the asterisk (*) and the question mark (?). The asterisk matches strings of
length zero or greater, whereas the question mark matches any single character.

Some example patterns:

e Allfiles thatend in “.c”:

e All files that start with “£red” and end in anything:

fred*

22

e All files that have “fred” somewhere in their name:
fred

e Allfiles that start with “sequence .” and end with any three characters:
sequence.???

Copying files between machines

You can copy files between your local computer and a remote computer using the scp
(“secure copy”) command. If your local computer uses Mac OS X or Linux then you can use
scp from the command line. However, if your local computer uses Windows then we
recommend you use the WinSCP tool:

http://winscp.net/eng/index.php

The principals of scp are the same for all systems, but WinSCP uses a graphical interface
instead of a command line. For the sake of brevity we show the syntax for the command line
in this document and refer Windows users to the WinSCP manual:

http://winscp.net/eng/docs/start

To copy a file from your local computer to a remote compute (say Merri at VLSCI) you use the
syntax:

scp source user@host.directory/dest

where source is the name of the file on your local computer, directory/dest is the path for the
file on the remote computer (the place to put it), and user is your username on the remote
computer. If your username is the same on the local and remote computers then you can omit
it in the command. Relative destination paths are interpreted with respect to your home
directory on the remote machine (which means an empty destination path refers to your home
directory itself). Here is an example which copies the file secrets. txt from the local
computer to $HOME /private on merri:

$ scp secrets.txt username@merri.vlsci.unimelb.edu.au:private/
(You should replace username with your actual username on the remote computer.)

To copy a file from the remote computer to your local computer you use the syntax:

http://www.google.com/url?q=http%3A%2F%2Fwinscp.net%2Feng%2Findex.php&sa=D&sntz=1&usg=AFQjCNGnMUb871F09ZEFhi5q_Ata_VlffA
http://www.google.com/url?q=http%3A%2F%2Fwinscp.net%2Feng%2Fdocs%2Fstart&sa=D&sntz=1&usg=AFQjCNG-a1DGHYINTPnTEtVGf7yEVOEN2A

23

scp user@host.directory/source dest

The same rules apply as before but directory/source is the path of the file on the remote
computer and dest is the place to put it on the local computer. Here is an example which
copies $HOME /private/secrets. txt on the remote computer to the working directory on
the local computer:

$ scp username@merri.vlsci.unimelb.edu.au:private/secrets.txt .
(Note the dot at the end which refers to the working directory on the local computer).

The sep command supports a —-r argument which tells it to copy entire directories recursively
in a similar fashion to cp -R.

Working with files

File types

Unix treats all files (barring some special cases) as merely sequences of bytes. That is to say,
for normal files, it does not distinguish between different types or formats. It is up to the
programs which work with files to decide how to interpret their contents.

Having said that, users often think of files as having a type based on what kinds of operations
they might like to perform on them. For example, we might think of a file as containing the
source of a Python program, or as the sequence data from a DNA sample.

The £ile command tries to guess the type of a file based on its contents and various
heuristics:

$ file main.c

main.c: ASCII C program text

$ file main.o

main.o: ELF 64-bit LSB relocatable, AMD x86-64,
$ file stats.r

stats.r ASCII English text

The last example above is a script from the R statistical programming language, which
demonstrates that the £11e command is not perfect.

It is also common for users to distinguish files as being “text” or “binary” (though we
emphasise again that Unix itself makes no such distinction). For example, the source code of

mailto:username@merri.vlsci.unimelb.edu.au
mailto:username@merri.vlsci.unimelb.edu.au

24

a HTML page is regarded as text, whereas the contents of a compiled program is regarded as
binary. The Unix philosophy has tended to encourage the use of text files because they are
generally “human readable” whereas binary files are generally not. However, a text
representation of data might not always be as compact as a binary one (especially when
numbers are being stored).

Traditionally text files contained sequences of bytes representing members of the ASCII
character set, where each character occupies exactly one byte in the file. However, ASCII is
slowly being superseded by Unicode, which contains all the ASCII characters plus many
others, including characters from non Latin-based languages. Unicode characters are stored
in files using a multi-byte encoding scheme such as UTF-8 (which was designed to be
backwards compatible with ASCII).

Unix comes with a large number of commands which help you manipulate text files, and on
GNU/Linux they generally support Unicode. However, the ASCII subset of Unicode is still
widely used, and we stick to that character set in this document for simplicity.

Displaying the contents of files

You can display the entire contents of one or more files with the cat command:

$ cat poem.txt
fat cat
sat flat

The cat command is nice and simple, but it tends to be impractical for large files because it
shows the entire contents at once. An alternative is the 1ess command, which supports text
scrolling and searching:

$ less stats.r

i EE I EE ARSI SRS SR T LR L
START PHI <- 0
SIZE <- 100 # side of square grid in pixels

It is hard to show the output of the less command in this document, so we just show the first
few lines in the example above. You can use the arrow keys to scroll up and down in the
output, /pattern to search for “pattern” in the file, and g to quit.

Sometimes you only want to view the first or last few lines of a file: this can be done with the
head and tail commands respectively:

$ head -3 stats.r

25

HH#HHHHHER AR SR HHHE R AR AR FHH RS R RS RHHHHR
START PHI <- 0

SIZE <- 100 # side of square grid in pixels

$ tail -5 main.c
init();
visualise (argc, argv);
finalise() ;
return O;

}

The first argument to head and tail is the number of lines to display, which, if you leave it
out, defaults to 10.

Searching for patterns in files

You can search for a pattern in one or more files using the grep command:

$ grep include *.c

main.c:#include "simulate.h"
queue.c:#include <assert.h>
queue.c:#include "types.h"
simulate.c:#include <gsl/gsl rng.h>

The example above searches for all the lines that contain the pattern “include” in all the files
in the working directory that end in “. ¢”.

When grep finds a match for the pattern in a file it prints out the whole line. When multiple
files are searched it prints the name of the file before the matching line.

The pattern can be a regular expression which allows sophisticated searches to be
performed. We don’t have space to describe regular expressions in this document, but there

is quite a detailed entry on Wikipedia:

http://en.wikipedia.org/wiki/Regular expression

The grep command has many arguments which control its behaviour. A couple of the more
common ones are -R for recursive search, -i for case-insensitive search.

Comparing files for differences

You can find differences between two files using the dif£f command. For example, suppose
we have two files with the contents of each shown in the table below:

http://www.google.com/url?q=http%3A%2F%2Fen.wikipedia.org%2Fwiki%2FRegular_expression&sa=D&sntz=1&usg=AFQjCNFn8AzydG1ItFnaedkGUGb3UZoFgQ

26

hello.c bonjour.c

#include <stdio.h> #include <stdio.h>

int main(void) { int main(void) {
printf ("Hello World\n"); printf ("Bonjour Monde\n");
return O; return O;

} }

$ diff hello.c bonjour.c

3c3
< printf ("Hello World\n");
> printf ("Bonjour Monde\n") ;

The output of dif££ shows the lines where the files differ. The text 3¢3 means that the 3rd
line in the first file was changed to the 3rd line in the second file. The < character marks lines
in the first file and the > character marks lines in the second file. If the files are the same then
diff will produce no output.

Editing files

There are many ways to edit files on Unix, but perhaps the simplest way is to use the
full-screen text editor called nano.

To create a new file, run nano with no arguments:
$ nano

To edit an existing file, run nano with the name of the file to edit as an argument:
$ nano poem.txt

A great feature of nano is that it has only a few commands and the most important ones are
displayed at the bottom of the screen, like so:

G Get Help 0 WriteOut
X Exit AJ Justify

The ~ character means “hold down the Control Key while pressing the character next to it”.
So, for example, to exit nano you should hold down the Control Key and simultaneously press
the x key (despite appearances the single-letter characters in nano’s commands should be
lowercase). If you have changed the file before exiting nano will prompt you to save the

changes.

Experienced Unix users tend to prefer text editors with more features than nano. The most
popular editors, especially for programmers, are vim and emacs. Unfortunately these editors
have a much steeper learning curve, and so we don’t cover them in this document.

Other handy commands which operate on files

There are lots of other commands on Unix which operate on files. We don’t have space to
describe them all in detail, but here is a short list which you might like to lookup in the future:

27

Command Description

awk Data extraction and reporting scripting language.

cut Remove sections from lines in a file.

find Search for files in a directory hierarchy using a pattern syntax.
gzip File compression (to make the file consume less space).
sed Tool for filtering and transforming text, similar to awk.
sort Sort lines of text files based on defined fields in each line.
tar Store many files in a single archive.

tr Translate or delete characters in a file.

uniqg Report or omit repeated lines in a file.

wc Count the number of lines, words and characters in files.

Processes

Programs and the search path

Almost every command you run in Unix is just an ordinary program which resides in the file

system somewhere (although a small number of commands are built into the shell directly).

28

Unix programs are found in executable files, and come in two flavours:

1. Binary files which contain machine instructions.
2. Text files which contain scripts.

The programs which contain machine instructions are loaded into memory and executed
directly by the computer’s hardware, whereas the programs which contain scripts contain text
commands to be executed by an interpreter (e.g. BASH, Python, Perl).

Each time you enter a command, the shell parses what you typed and determines the name
of the program to run, which is often just the first word of the command text. For example, in
the following the command the program to run is called chmod:

$ chmod -R ug=rwX,o= my data

Once the shell has determined the name of the program to run it searches the file system for
an executable file with the same name. This raises some important questions, such as where
does it search, and what if there is more than one matching file? The shell solves these
issues with a list of directories called a search path. You can print out the value of your search
path using the following command:

$ echo $PATH
/usr/local/bin:/bin:/usr/bin

Each directory in the search path is separated by a colon (:) character. When the shell
searches for a program it looks in each directory of the search path from left to right until a
either a match is found or there are no more directories to consider. The first match is taken to
be the program to run, therefore directories towards the left of the search path take
precedence over directories towards the right. If no match is found then the shell will report an
error of the form “command not found”.

You can ask the shell to tell you where it finds a command using the which command:

$ which chmod
/bin/chmod

If the program is not in your search path then you must tell the shell exactly where to find it,
for instance by giving an absolute path for the file. If the program is in the working directory
then you should prefix its name with the two characters . / (because the dot is shorthand
notation for the working directory):

$./myprog -o out

29

Process management

In Unix terms, a process (also called a task) represents the running instance of a program
combined with all its associated state. The state of a process includes, amongst other things,
its allocated memory, a collection of environment variables, and various odds-and-ends to
enable it to perform input and output. Processes are identified by a number called a process
ID (PID), and each process is owned by a user, which affects what privileges it has on the
system.

You can find out what processes are running with the ps command:

$ ps

PID TTY TIME CMD
21788 pts/30 00:00:00 bash
32360 pts/30 00:00:00 ps

By default ps prints a simple report about all the process that are owned by you. In the
example above there are two processes, the first is the bash shell, and the second is the ps
command itself (yes, ps prints information about its own process!). There are four columns in
the output which provide the following information:

The PID of the process, e.g. 21788

The terminal device connected to the process (for interactive processes), e.g. pts/30
The total amount of time the process has spent on the CPU, e.g. 00: 00: 00

The name of the program running in the process, e.g. bash

PODdD=

You can see all the processes on the system with ps -e:

$ ps -e

PID TTY TIME CMD

17 00:00:05 init

2 7 00:00:02 migration/0
32 00:00:00 ksoftirqd/0

There are usually a large number of processes on a system at any moment, so the output of
the above command is likely to be very long.

Unix is a multitasking operating system, which means that it can share the available
computing resources amongst multiple active processes. It does this by maintaining a queue
of processes that are runnable. A scheduler in the kernel decides which process to run next
on a particular CPU. Running processes are allocated a slice of CPU time. When its time slice

30

is up the running process is preempted by the scheduler and put back in the queue until it
gets another turn to run in the future. A process can also be blocked, which means it is not
presently runnable because it is waiting for some external event, such as input from the user.

You can get a dynamic view of the current processes on the system using the top command,
which shows the same kind of information as ps but in a continually updated panel (to see
just your own processes type ‘u’ and then your username, and to quit press ‘q’).

Job control

Interactive programs, including the shell, read input from, and write output to a terminal
device. Due to its multitasking nature, Unix allows a user to run multiple processes
simultaneously. It is reasonable to let multiple processes share a terminal for output (which
can be interleaved between them), but it is not reasonable for multiple processes to read their
input from the terminal at the same time (otherwise chaos would ensue). The shell allows you
to control which process has read access to the terminal by maintaining the concept of
foreground, background and suspended jobs. A foreground job is a process that can read
from the terminal, and there can only be one such job at any time. A background job is a
process that can write to the terminal but not read from it. A suspended job is blocked from
running, and it remains in that state until it is either awoken or terminated. There can be
multiple background and suspended jobs at any time. Each job is numbered by the shell,
which makes it easy to refer to in future commands, but the job number should not be
confused with the PID.

The default behaviour of the shell is to run a new command as a foreground job. This is not a
problem for short running commands because they only stay in the foreground for a brief
moment. However it is desirable to run longer computations which don’t need to read from the
terminal in the background. This is achieved by placing an ampersand at the end of the
command line:

$ xterm &
[1] 5391

The above example starts the xterm program and runs it in the background. The shell
responds with the text “[1] 5391, which indicates this is job 1 with PID 5391.

You can find out the status of your current jobs with the jobs command:

$ jobs
[1]+ Running xterm &

You can bring a job back into the foreground with the £g command by specifying the job
number:

31

$ fg 1
xterm

You can suspend the current foreground job by pressing Control-z. If we did that for the
current example the shell would respond like so:

[1]+ Stopped xterm

This indicates that job 1 is suspended and control of the terminal is handed back to the shell.
A suspended job can be returned to the foreground with £g or it can be sent to the
background with the bg command:

$bgl
[1]+ xterm &

Terminating processes

A running process can be terminated in a number of ways:

e On its own without request from the user (perhaps because it runs out of input).
e After the user asks it to quit, such as by pressing Control-x in nano.
e After receiving a signal from the operating system that asks (or forces) it to quit.

You can request the foreground job to quit by pressing Control-c. This sends the process an
interrupt signal. Most processes will terminate gracefully when given this signal.

You can also send an interrupt signal to a process using the kill command by naming its
PID:

$ kill 5391
$ jobs
[1]1+ Exit 15 xterm

In extreme circumstances a process might not terminate when given the interrupt signal. This
could be intentional, or it could be because the process has run out of control. You can be
more forceful and send the process a kill signal (-9), which cannot be ignored:

$ xterm &
[1] 8518
$ kill -9 8518

Obviously you can only kill processes that you own.

32

Standard input and output

Every Unix process has three default streams associated with it: one input stream and two
output streams associated with it. The input stream is called standard input (stdin), and the
output streams are called standard output (stdout) and standard error (stderr):

stdout
. 3
stdin
—_ process stderr
=

As the names suggest, stdin is for input to the process, stdout is for normal output, and stderr
is for error output.

Output redirection

By default the shell connects stdin to the terminal keyboard and stdout and stderr to the
terminal screen, however, it is possible to redirect the streams to and from files.

For example we can redirect the stdout of the ps command and save it to a file like so:

$ ps > psout
The greater-than character (>) tells the shell to connect the stdout of the process to the file
named on the right-hand-side. In this case the file is called psout, but you can choose any
name you like. If a file with the same name already exists then it will be overwritten with new
content, so you must use redirection with caution.

We can verify that psout contains the output of the ps command with cat:

$ cat psout

PID TTY TIME CMD
7559 pts/8 00:00:00 bash
11524 pts/8 00:00:00 ps

You can redirect stderr in a similar fashion with 2> (instead of >) and both of them at the
same time with &>.

Standard input can be redirected to come from a file (instead of the keyboard) using the
less-than (<) character, like so:

33

$ wc -w < psout
12

In the above example the we command counts the number of words in the text in its stdin,
which is redirected from the file psout.

Both types of redirection can be used in the same command:
$ wc -w < psout > wcout

The above example redirects the contents of psout into the stdin of we and then redirects the
stdout of we to the file wecout.

Pipes

In a similar fashion to redirection, the shell can also arrange for the stdout of one process to
be connected to the stdin of another process (and merge the stderr streams):

stdout stdout

. - H
stdin stdin

— process 1 stderr > process 2 stderr

—

This connection of processes is achieved using a pipe (|). For example we can cat the
contents of the psout file and pipe it into the we command like so:

$ cat psout | wec -w
12

You can build up even longer pipelines by chaining more than two processes together:

$ cat psout | sort | tail -1
PID TTY TIME CMD

And you can use file redirection with pipelines too:
$ cat psout | sort | tail -1 > out
Pipes are a handy way to build up complex tasks from simpler programs, and they

demonstrate the advantages of the Unix philosophy of providing small programs which “do
one thing well”.

34

Shell scripting

A shell script is an executable text file which contains a canned sequence of shell commands.
Scripts allow you automate complicated tasks and avoid repeating yourself.

The first line in a shell script is special. It starts with a magic two letter sequence #! which is
followed immediately by the path of the shell program:

#!/bin/bash
The rest of the file can contain any sequence of shell commands, exactly as you would type

them at the prompt. For example we could turn our previous pipeline into a shell script by
creating a text file with the following contents:

#!/bin/bash
cat psout | sort | tail -1

If you save the script to a file called myprog then you can make it executable like so:
$ chmod u+x myprog
And you can run myprog as a command in the normal way:

$./myprog
PID TTY TIME CMD

(note the . / at the start of the file name because it is in the working directory and not in the
search path).

The bash command language is actually quite full-featured. It has many of the things you'd
expect to find in a programming language such as variables, conditionals, loops, functions,
arrays and much more. It is impossible to cover all the features of the shell in this document,
so we refer you to the Bash Scripting Guide:

http://tldp.org/LDP/abs/html/

The downside of shell scripting is that the syntax is optimised for making shell commands as
concise as possible (to make them easy to type at the prompt), which tends to make the other
constructs awkward. As such it is well suited to automating small to medium tasks which
consist predominantly of calls to other commands on the system. For larger tasks which are

http://www.google.com/url?q=http%3A%2F%2Ftldp.org%2FLDP%2Fabs%2Fhtml%2F&sa=D&sntz=1&usg=AFQjCNHdpkdXaIGPXVTOuDe40DXSajIc-Q

more algorithmically complex it is better to choose a more conventional programming

language.

Command summary

Command | Description

Control-c Interrupt (quit) the foreground job.

Control-z Suspend the foreground job.

awk Data extraction and reporting scripting language.

bg Send a job to the background.

cat Display the contents of a file.

cd Change directory.

chgrp Change the group of a file/directory.

chmod Change the permissions of a file/directory.

cp Copy a file/directory.

cut Remove sections from lines in a file.

date Display the date and time.

echo Print a string.

file Guess the type of a file.

find Search for files in a directory hierarchy using a pattern syntax.
fg Bring a background or suspended job to the foreground.
grep Search the contents of files.

groups Display the groups of a user.

gzip File compression (to make the file consume less space).
head Display the first few lines of a file.

history

List your command history.

35

jobs List your active jobs.

kill Terminate a process.

less Display the contents of a file.

logout End your login session.

1s List the contents of a directory.

man Lookup the Unix manual.

mkdir Create a directory.

mv Move (rename) a file/directory.

nano Edit a file.

printenv | Display your environment.

ps Show information about running processes.

pwd Print the working directory.

rm Remove one or more files.

rmdir Remove an empty directory.

scp Copy files between computers.

sed Tool for filtering and transforming text, similar to awk.
ssh Remote login to a computer.

sort Sort lines of text files based on defined fields in each line.
tar Store many files in a single archive.

top Show current running processes.

tr Translate or delete characters in a file.

uniq Report or omit repeated lines in a file.

wc Count the number of lines, words and characters in files.
which Search for a command in the path.

36

