
Monadic Parsing: A Case StudyBernard Pope, Simon Taylor and Mark WielaardDepartment of Computer ScienceThe University of MelbourneParkville, Vic. 3052, AustraliaAbstractOne of the selling points for functional languages is the ease with which parsers for simple lan-guages can be expressed. In this report we give an introduction to monadic and operator precedenceparsing in functional languages, using the parsing of propositional logic formulas as an example.1 IntroductionA classical showcase for higher-order functional programming is functional parsing. The idea, which goesback at least to Burge [2], is that powerful parsers can be built simply by combining simple parsers(essentially functions from input strings to output tokens) by higher-order functions, so-called parsercombinators, whose job it is to build complex structure trees from simpler trees. This approach has beenfollowed up by Hutton [5], Fokker [4] and others.Recently the so-called monadic programming style has become popular in functional programming,and monadic parsing has appeared as a useful special case [6]. The Hugs distribution [7] includes a\parser library" which includes support for monadic style parsing.In this essay we describe methods for parsing in functional languages. Section 2 provides a gentleintroduction to monadic parsing. Section 3 discusses the case of operator precedence parsing. In Section 4we go through the details of a non-trivial example, namely the translation between modern notation forpropositional logic and that used in Principia Mathematica [12].2 Functional Parsing and Monads2.1 Functional parsing: an overviewFunctional programming languages provide an elegant method for building complex parsers out of simplerparsers. Elementary parsers for the primitives of a language (for example, the terminal symbols of a BNFgrammar) can be combined together by higher order functions (called parser combinators) to form morepowerful composite parsers which can in turn be combined to form a complete parser for a given language.This method of creating functional parsers is well known, and Fokker [4] provides a thorough exposition.The essence of parser combinators is their ability to provide mechanisms for combining a number of parsersin sequence or alternation. This is particularly useful if we view parsing as the recursive application ofBNF grammar rules in a top-down, left-to-right manner (left-to-right, recursive descent parsing).What does a functional parser look like?1 In our de�nition, a functional parser is a function whichtakes a list of tokens as input and returns either a parse-result (if the parse partially succeeds) or afailure-ag (if the parse fails). A parse-result is a pair (value, tokens-left), such that value represents1We will restrict ourselves to deterministic parsers in this paper, although non-deterministic parsers (those that parsean input in a number of possible ways) are possible, see [6]. 1

exp ::= term op term k termterm ::= signed term k signedsigned ::= basic k `-' basicbasic ::= var k `(' exp `)'op ::= `|' k `->' k `<->'Figure 1: BNF grammar for propositional logicthe structure of the tokens seen so far (typically this will be a parse tree), and tokens-left is the list ofunparsed tokens from the input. A failure-ag is a unique return value that indicates that the parsercould not parse any of the input. The relevance of the failure-ag will be discussed below.2.2 A high-level notation for functional parsingUsing the notation that `�' represents a sequencing operator, and `[' represents an alternation operator,a high-level design of a functional parser can be given. Consider two parsers, � and �, and a list of inputtokens �. We can specify the sequential application of � and � on � by the statement `(� � �) �'. This isthe application of � on �, followed by the application of � on �, such that � is the list of tokens remainingafter � has consumed a (possibly zero) number of tokens from �. In other words, the � operator allowsmultiple parsers to be applied in sequence, such that each successive parser is applied to the tokens whichremain after the previous parser has �nished. The statement `(� [�) �' represents the application of� on �, or, if � fails to parse any tokens, the application of � on �. Another way of understanding the`[' operator is that it allows for an alternative parser to be applied to the input, if the preceding parserfails.There is one important detail that has been overlooked thus far: parsers return a parse-result. Thenotation does not appear to allow for such results to be manipulated. This is true, however, we are onlylooking for a high-level description of functional parsers. Thus, we will assume that the results of parserswill be implicitly available for manipulation. When two parsers are sequenced, we have said that thesecond parser has access to the tokens-left from the �rst parser. We will also assume that the secondparser has access to the value constructed by the �rst parser, and that the value s of all parsers in asequence may be combined together to form a new composite value , if so required.Let us now look at a simple example. A BNF grammar is de�ned in �gure 1 for sentences in propo-sitional logic. The terminal symbols of this grammar are the binary operators de�ned by the rule op,parentheses, and variables (var, a non-empty string of alphabetic characters). Conjunction is representedby the sequencing of the terms, and conjunction binds tighter than any of the binary connectives, so forexample `p q | r' means `(p ^ q) _ r'.Using our high-level notation, the speci�cation for an expression (exp) parser is simple. If termP isa parser for terms and opP is a parser for operators then expP (a parser for expressions) is de�ned as:expP = (termP � opP � termP) [termP . This can be read as: an expression parser is a termparser followed by an operator parser followed by a term parser, or it is just a term parser. A high-leveldescription of the rest of the parser follows: 2termP = (signedP � termP) [signedPsignedP = (basicP) [(notP � signedP)basicP = (varP) [(bracketP � expP � bracketP)2Note that notP , bracketP , and varP are elementary parsers for the negation symbol, parentheses, and variablesrespectively. 2

> data Parser a = P (String -> Maybe (a, String))>> instance Monad Parser where> -- return :: a -> Parser a> return v = P (\inp -> Just (v, inp))>> -- >>= :: Parser a -> (a -> Parser b) -> Parser b> (P p) >>= f = P (\inp -> case p inp of> Just(v, out) -> (papply (f v) out)> Nothing -> Nothing)> -- end of Monad instance definition>> papply :: Parser a -> String -> Maybe (a, String)> papply (P p) inp = p inpFigure 2: A determinsitic parser as a state monad2.3 A brief introduction to monads, in reference to parsingWhat does monadic-style programming o�er the �eld of functional parsing? Firstly, the monadic oper-ators bind and plus provide useful mechanisms for achieving the sequencing and alternation of parsersrespectively. Secondly, the do notation provided by Haskell provides a very readable method for ex-pressing the sequential application of parsers, and hides the plumbing of state information between eachparser. Functional parsers written in the monadic-style have the look and feel of an imperative recursivedescent parser, without any comprimise to the purity of the implementation language. In summary,monads allow us to impose an order of evaluation and handle state manipulation, in a pure functionallanguage. Furthermore, with the requisite syntatic sugar added, all of this can be written in an intuitivesyntax.Readers unfamiliar with the technical details of monads (in functional languages) are referred to thefollowing articles [6, 9, 11, 8, 3, 10]Determinsitic parsers (those that produce exactly one parse-result) are in e�ect instances of the statemonad, as described in Jones [8]. A Haskell implementation of a determinsitic parser monad is given in�gure 2. It is similar to Jones' state monad, except that it is renamed to Parser to indicate a narrowermeaning in the context of parsing.Using the nomenclature introduced earlier in this section, an object of type `Parser a', is a mappingfrom a string to either a parse-result, or to a failure-ag. Note the use of the Maybe type constructorwithin the Parser type constructor. This allows a Parser to return either `Just(val, toks_left)' (aparse-result) or `Nothing' (a failure-ag indicating that the parser failed to parse any input). The functionpapply simply allows us to get inside the parser datatype and apply it to some input.Note that Haskell uses the symbol `>>=' to reresent the monadic bind operator. There is a strong(and intentional) connection between the bind operator and the � operator given above in the high-leveldescription of functional parsers. This connection will be explored in the next sub-section of the paperwhere we introduce the do-notation of Haskell.2.4 The connection between do notation and the monadic bindThe overall intention of this sub-section is to present to the reader the connection between the low levelimplementation of monadic bind, the medium level syntax of the do notation, and the high-level notationof the � operator. Recall, that in our high-level de�ntion of functinal parsers, to sequence two parsers,� and �, we used the notation `(� � �)'. In Haskell, using the do-notation, we write the sequencing3

of two parsers, alphaP and betaP, as `do {alphaP; betaP}'. Recall also, that we have de�ned parsersto be functions that return either a failure-ag, or a parse-result. Our high-level notation required thatthe results of a parser are implicitly available to all other parsers following in sequence. The do-notationof Haskell accomodates the manipulation of parse-results in two ways. The primary concern of thesequencing operator is that the tokens-left from the �rst parser are given as input to the second parser.This is where the do-notation makes use of the bind operator. Syntactic and semantic de�ntions for thedo-notation are given in [3]. If we look inside the implementation of the do-notation, it is easy to see howthe tokens-left are threaded between parsers in sequence:3do{e} = edo{e; es} = e >>= _ -> do{es}In the above recursive de�nition of (part of) the do-notation, e represents an expression, and esrepresents a list of expressions separated by semicolons. It is useful to think of the application of a parser tosome input as an expression. Thus we can view `do {alphaP; betaP}' as ` alphaP >>= _ -> betaP',which can be read as: `bind alphaP to a function which ignores its input and returns betaP'. Lookingback to our de�nition of >>= (the monadic bind operator), we can see that the above do-sentence willapply alphaP to its input tokens to produce a parse-result, the value of the parse-result produced byalphaP will be ignored, and betaP will be applied to the tokens-left produced by alphaP.The secondary concern of the sequencing operator is what should happen if we do not want to ignorethe value produced by a parser? There is a further rule that we must add to the above de�nition of thedo-notation to solve this problem:do{pat <- e; es} = e >>= f where f pat = do{es}; f _ = zeroThis extra rule allows us to manipulate the value produced by a parser applied in a sequence ofparsers. We can now write the following Haskell code: `do {val <- alphaP; betaP val}'. In this casethe value produced by alphaP is made available to betaP through the variable val (a Haskell pattern),which allows pattern matching on the value produced. If the pattern fails to match, then a defaultde�ntion of the function f is given which returns zero (an empty parse, or failed parse) and no furthersequencing is performed. This has been a brief description of the do-notation of Haskell, however, we cansee that we now have a concrete mechanism for implementing the high-level operator �.2.5 Achieving alternation in our monadic parserWe will now turn our attention to achieving alternation for our example monadic parser, and thusimplement the high-level operator [. For determinsitic parsers, applying two parsers in alternationessentially requires that the �rst parser be applied to the input, if it fails to parse any of the input thenthe second parser should be applied to the input. Therefore, we need some manner for representing thefailure of a parser. To indicate that a parser has failed to parse any input, we allow it to return the valueNothing. In monadic jargon, we are giving our parser monad a zero, and thus can make it an instanceof the MonadZero type class:> instance MonadZero Parser where> -- zero :: Parser a> zero = P (\inp -> Nothing)Thus, zero for our parser monad, is a parser that takes some input, and returns a failure-ag `Nothing'.This is the same zero mentioned in the de�nition of the do-notation of Haskell.4 The monadic equivalent3This description of the do-notation is derived from that given in [3].4In order for do-notation to be possible for a monad it must have a zero, and so a zero is important for both alternationand sequencing. 4

< expr > ::= < expr > ^ < expr > k < expr > _ < expr > k< expr > ! < expr > k < expr > $ < expr > k: < expr > k (< expr >) k varFigure 3: Operator grammar for propositional logic.of the high-level [operator is the `plus' operator, which in Haskell is represented by the symbol ++. Toimplement alternation for our parser monad in Haskell, we must make the monad an instance of theMonadPlus type class, and de�ne the ++ operator:> instance MonadPlus Parser where> -- ++ :: Parser a -> Parser a -> Parser a> (P p) ++ (P q) = P (\inp -> case p inp of> Just (v, inp') -> Just (v, inp')> Nothing -> q inp)The de�nition for the ++ operator applies the �rst parser to the input, if it returns a parser result,then the whole expression should return that parse result, however, if it fails, then the second parsershould be applied to the input. It can be seen that we also have a concrete mechanism for representingthe high-level operator [.2.6 Some e�ciency considerationsNow that we have achieved sequencing and alternation for our parser monad in Haskell, it should bestraightforward to translate the high-level parser description (given earlier) into Haskell code. Examina-tion of the grammar in �gure 1, will reveal that the grammar is not LL1. The direct translation of thehigh-level parser into Haskell would result in a correct parser. However, in many circumstances a degreeof backtracking (through alternation) would occur, making the parser ine�cient. Where possible, thisine�ciency can be avoided by converting the grammar of the langauge into an equivalent LL1 grammar.3 Operator precedence parsing3.1 Operator precedence and relationsGiven a language where di�erent operators have di�erent precedences one could describe a context freegrammar for such a language by creating nonterminals for the di�erent levels of precedence. This is whatwe did in �gure 1. <exp> uses <term>, which uses <signed>, which uses <basic>. We can easilysee that brackets have higher precedence than minus, which has higher precedence than and, which hashigher precedence than the other operators. The other operators have the same precedence since theyare mentioned in the same rule.As described in [1] an operator precedence grammar is a context-free grammar where no productionright side is empty or has two adjacent non-terminals.5 Just as it is more convenient to write a regularexpression for a regular language. It is sometimes easier to describe a language with just operatorprecedences, especially when we have a lot of di�erent precedences. (We will see an example of this inthe next section.)To make the grammar in �gure 1 into an operator precedence grammar we could introduce a symbol^ and write it as in �gure 3. Then we would have to give the precedences of the operators.5Notice that we use a simpli�cation of the concept described in [1].5

: ^ _ ! $ (): l m m m m l l^ l l m m m l l_ l l l l l l l! l l l l l l l$ l l l l l l l(l l l l l l :=) m m m m m m mFigure 4: Operator precedence relations for the propositional grammar.(Operators at the side are to the left, operators on top are to the right.)We can use three precedence relations, l, := and m to de�ne the precedence of the di�erent operators.Where a l b means \a yields precedence to b", a := b means \a has the same precedence as b" and am b means \a takes precedence over b". We will assume that only one of these relations holds betweentwo operators, but it may be that both a l b and b l a holds, which means that the operator to theleft of the other has always higher precedence.The intuitive way of determining what precedence relations should hold between a pair of terminalsis by looking at the traditional notions of associativity and precedence of the operators. One can think ofthe precedence relation holding between two operators in an expression as which operator must evaluate�rst. We will give an example of this way of thinking about the relations after we have de�ned theprecedence relations for our example grammar.In our example the operator ^ should have higher precedence than the operator _. So we make _ l^ and ^ m _.To show that an operator is associative to the left we make a m a , and if an operator is associativeto the right we make a l a . So in our example all binary operators have op m op , but also _ m ! and! m _, this expresses that _ and ! have the `same' precedence, but the one on the left binds strongerthan the one on the right.The brackets are a bit more subtle. We want to say that operators between brackets have higherprecedence than operators outside the brackets. We can do this by de�ning the following relations forthe operators with respect to `(' and `)' :a l ((l a) m a a m)(l () m)(:=)Symbols (non operators) can be viewed as operators which immediately evaluate. So our parseralgorithm will treat them in a special way. (One could also de�ne for every operator -including brackets-var m a and a l var to express this.) Figure 3.1 shows all the relations for the propositional grammar.Lets see what all this means for a simple example. If we have the following expression:: q _ r ^ (p $ q)We will assume that the var symbols immediately evaluate. If we now show only the relations betweenthe normal operators we get: : m _ l ^ l (l $ m)If we read this from left to right it says: First evaluate the :, before you evaluate the _, then waitwith evaluating the _ until we have evaluated the ^ and the ^ should wait for the evaluation of the6

(and the (should wait for the evaluation of the $, this $ must evaluate before the). After the $has evaluated we have the following situation (again replacing evaluated expressions with the relationsholding between the operators left): _ l ^ l (:=)Which means that the _ should evaluate after the ^ evaluates, which should wait until the (evaluates.The := between the brackets means that they should now evaluate. (Which is just what the $ betweenthe brackets evaluated to.) Now we can evaluate the ^ and �nally we evaluate the _.Or if we would put an l before the whole expression and a m after the whole expression (againwithout the normal symbols), we would get:l : m _ l ^ l (l $ m) mWhich could be read as a `normal' bracketed expression. Expressing the intended evaluation order.3.2 Operator-precedence parsing algorithmWe will now construct an algorithm for parsing operator precedence grammars. As seen in the explanationabove the way we can read an operator precedence grammar is from left to right, when we see a symbolwe just accept it as is, and when it is an operator we will examine the operator to the right of it. Ifthe operator has a greater or equal precedence (l or :=) than the operator to the right of it we have toevaluate the operator, if the operator has a lower precedence (l) than the operator to the right of it. Wewill have to wait until the operator right from of it evaluates. We can implement this using two stacks,one stack for the symbols and one stack for the `suspended' operators. Figure 5 shows an imperative wayof expressing this algorithm.64 Example: propositional formulas a la Principia MathematicaPrincipia Mathematica [12] introduces a notation for propositional formulas designed to eliminate mostparentheses from formulas. The method to accomplish this is to add dots to break an expression intoparts, more dots meaning a larger break. A conjunction consists of at least one dot. Dots associatedwith a conjunction result in less of a break than dots associated with a disjunctive connective such as _,! or $. Negation of anything other than a simple proposition still requires parentheses.The precedence rules for dotted connectives are as follows:� Dots for conjunction have precedence left and right over any smaller group of dots until either endof the proposition.� Dots beside a disjunctive operator have precedence away from the operator over any smaller numberof dots next to a disjunctive connective or a smaller or equal number of dots for conjunction.� Both conjunction and the disjunctive connectives are left associative.This language was designed for parsing by humans. Formal language description mechanisms hadnot been discovered in 1927 when Principia Mathematica was written. As it happens, the notation canbe described using an operator precedence grammar with an in�nite number of operators as shown in�gure 7.The interesting part of the precedence table is the handling of the conjunction and disjunction oper-ators. Most operator precedence grammars have a �nite number of operators, but here there is no limitto the number of dots that can accompany a conjunction or disjunction.All that is required to parse this grammar using the operator precedence parser de�ned in section 3is to create a function encapsulating �gure 7 and de�ne parsers for the operator symbols.6This is a simpli�cation of the algorithm given in [1]. 7

symbol_stack = emptyoperator_stack = emptyget_symbol;while (not symbol = END) dobegin if sym is a symbol then push sym onto symbol_stackelse if sym is an operator thenbegin if (empty(operator_stack)) thenpush(sym, operator_stack)elsebegin while (order(top(operator_stack), symbol) = LT ||order(top(operator_stack), symbol) = EQ) doapply pop(operator)push(sym, operator_stack)endendget_symbolendwhile operator_stack <> empty dobegin apply pop(operator_stack)end Figure 5: Imperative operator-precedence parsing algorithm
Modern notation Principia Mathematica notationp _ q p _ qp q p.qp (q ! r) p.q ! rp ! (q _ (r $ s)) p $: q _. r $ sp (q r _ s) ! (t u $ v) p:q.r._ s:!:t.u.$ vFigure 6: Examples of Principia Mathematica notation

8

conj (n1) disj (n2, n3) : varconj (n4) if n4 > n1then lelse m if n4 > n2then lelse m l ldisj (n5, n6) if n6 � n1then lelse m if n6 > n2then lelse m l l: m m | lvar m m | |(l l l l) m m m |begin l l l l() endconj (n4) l m mdisj (n5, n6) l m m: l m mvar | m m(l := |) | m mbegin l | |Figure 7: Operator precedences for the notation described in Principia Mathematicaconj (n) Denotes a conjunction with n dots.disj (n1, n2) Denotes a disjunctive operator (_, ! or $) with n1 dots to the left and n2 dots to theright.begin Denotes the start of the string to be parsed.end Denotes the end of the string to be parsed.

9

Action Stack Remaining input$p : q:r: _ s$shift $ p : q:r: _ s$shift $lp : q:r: _ s$shift $lpm : q:r: _ s$reduce $l : q:r: _ s$shift $l : lq :r: _ s$shift $l : lqm: r: _ s$reduce $l : l: r: _ s$shift $l : l:lr : _ s$shift $l : l:lrm:_ s$reduce $l : l:m:_ s$reduce $l : l:_ s$shift $l : l: _ls $shift $l : l: _lsm$reduce $l : l: _m$reduce $l : m$reduce $$ Figure 8: Parsing steps for the formula p : q:r: _ s5 Conclusion and further workMonads provide an elegant way to de�ne parsers for LL(1) grammars. The main contribution of themonadic style is to allow the hiding of the threading of the parser state through the computation.Modelling of failure and non-determinism can easily be provided. The main drawback of monadic styleparsers is that it is very easy to produce parsers which are very ine�cient due to backtracking.Operator precedence grammars are a useful class of grammars for parsing expression-type grammars.In some cases, operator precedence parsing can be used where no BNF grammar exists for the language,as for the Principia Mathematica notation introduced in section 4. A generic operator precedence parsercan be written in any higher-order language, making parsing operator precedence grammars as easy asde�ning the precedence table and providing parsers for the operators.Logic programming languages also provide good support for writing simple parsers. Non-determinismand failure are built into the language. DCG notation is provided to hide the parser state arguments toavoid unnecessary plumbing. It would be interesting to compare DCG parsers with monadic parsers withregard to style and expressiveness.In summary, the monadic and operator precedence parsers discussed here are very useful for rapidprototyping and for applications where error-diagnosis, error-recovery and maximal e�ciency are notimportant considerations, and for some grammars which cannot be implemented using standard parsergenerators.References[1] A. Aho, R. Sethi, and J. Ullman. Compilers: Principles, Techniques, and Tools. Addison-Wesley,1986.[2] W. Burge. Recursive Programming Techniques. Addison-Wesley, 1975.
10

[3] J. Jeuring E. Meijer. Merging monads and folds for functional programming. In J. Jeuring andE. Meijer, editors, Advanced Functional Programming, volume 925 of Lecture Notes in ComputerScience, pages 228{266. Springer, 1995.[4] J. Fokker. Functional parsers. In J. Jeuring and E. Meijer, editors, Advanced Functional Program-ming, volume 925 of Lecture Notes in Computer Science, pages 1{23. Springer, 1995.[5] G. Hutton. Higher order functions for parsing. Journal of Functional Programming, 2:323{343, 1992.[6] G. Hutton and E. Meijer. Monadic parser combinators. Technical Report NOTTCS-TR-96-4, Dept.of Computer Science, University of Nottingham, 1996.[7] M. Jones. Hugs 1.3 home page, http://www.cs.nott.ac.uk/Department/Staff/mpj/hugs.html.[8] M. Jones. Functional programming with overloading and higher-order polymorphism. In J. Jeuringand E. Meijer, editors, Advanced Functional Programming, volume 925 of Lecture Notes in ComputerScience, pages 97{136. Springer, 1995.[9] P. Wadler. Comprehending monads. Mathematical Structures in Computer Science, 2:461{493, 1992.[10] P. Wadler. The essence of functional programming. In 19'th Annual Symposium on Principles ofProgramming Languages, 1992. Have to check this reference.[11] P. Wadler. Monads for functional programming. In J. Jeuring and E. Meijer, editors, AdvancedFunctional Programming, volume 925 of Lecture Notes in Computer Science, pages 24{52. Springer,1995.[12] A. N. Whitehead and B. Russell. Principia Mathematica, volume 1. Cambridge University Press,second edition, 1927.

11

