Ten rules of etiquette for scientific code

The most important qualities of scientific code are correctness and performance
(in that order), and we rightly burn a lot of calories in their pursuit. Unfortunately
we seem to be less concerned with how our software is used, and our tools have
a reputation for bad manners. Mostly this is due to sloppiness, tight deadlines,
non-existent budgets, and the fact that usability is a distant consideration
compared to getting a result for a paper. Having worked in the field for five
years now I've observed that there are many little details about how we write
and distribute our programs that could easily be improved.

In 2013 Torsten Seemann wrote “Ten recommendations for creating usable
bioinformatics command line software”, which got me thinking about my own
experiences with scientific code. Torsten’s list focused on interactive command
line usage, whereas my observations are more concerned with how code exists
in the scientific computing ecosystem, particularly in the context of large scale
High Performance Computing (HPC) centers.

Use a standard license

A standard license provides minimum fuss for users and increases the chances
that your software will be widely used. The Open Source Initiative provides a
good description of the main open source options.

It is very common for research centers to install software on behalf of their users.
Unsurprisingly such research centers (and their parent institutions) tend to be
risk averse when it comes to legal matters. A non-standard license is very likely
to require vetting by lawyers, which can be a protracted exercise.

Make your license easy to find. The license should be indicated prominently
near the start of the user documentation. Refer to the license by its common
name (e.g. the BSD 3-Clause License), and keep a copy of the license terms in a
text file in the top directory of the source repository.

If your software includes external packages in its distribution then make sure
the licenses for those packages are clearly indicated both in the distribution files
and in the user documentation.

It may be tempting to take a standard license and add your own little twist to
it, such as a “cite my work” clause. Resist the urge! Even small adjustments
will force research centers to send your license to the lawyers for scrutiny. A
polite citation request in the documentation should be sufficient. Responsible
users will do the right thing, especially if you make it easy for them.

If your code is not open source then please try to make your license comprehensible
to the target users (avoid legalese).


http://www.gigasciencejournal.com/content/2/1/15
http://www.gigasciencejournal.com/content/2/1/15
http://opensource.org/
http://opensource.org/licenses
http://dilbert.com/strip/2013-08-11

Log progress and diagnostics to file

A log file can be a godsend to anyone who is trying to find out what a program
has done, and they are incredibly useful for bug reporting.

Here are some things that are log-worthy:

e The timestamp of when the program started and ended. Timestamps
should show the date and time of day down to seconds.

e The version of the program.

e The exact command line used to run the program, which can be obtained
from the argument vector. This is useful if you want to run the computa-
tion again, especially so in the distant future when you’ve forgotten the
command line syntax.

o Basic statistics about program execution, for example number of data
points processed.

e Warnings and error messages.

¢ Milestones in the computation process.

o Exact copies of any shell commands called by the program.

Most programming languages provide logging libraries, such as logging for Python.
Good logging libraries have lots of features that are tedious to implement yourself,
such as:

e Automatic timestamping of messages.

¢ Customisable logging levels such as info, warning, error and so forth.

e Proper handling of output buffering so that your log messages arrive in
the file in a timely manner.

e Support for interleaving logging messages from concurrent processes.

¢ Rolling log files, which are useful for long running applications.

You may also consider allowing the log messages to optionally appear on the
standard error device (stderr). I think a file is generally the better option
because it won’t get lost by some accidental output redirection, and you won’t
clutter stderr with junk. While I think it is good practice to write error
messages to the log file, I think it is also important that they also appear on
stderr for the benefit of interactive command line users (see below for more
thoughts on error messages).

Standardise on data formats

Standard data formats enable interoperability. In the very least you should try
to avoid inventing your own ad-hoc formats when suitable alternatives already


https://docs.python.org/3/howto/logging.html

exist. Unless your software has special I/O performance requirements, text files
are preferable over binary files because they are friendlier to humans and Unix
command line utilities such as grep. If you have special data requirements that
are not well suited to text then consider HDF5.

CSV (comma separated values) is recommended for tabular data because it is
relatively simple and plays nicely with spreadsheet applications. Most program-
ming languages provide CSV libraries, such as the csv library in Python. It is
good practice to provide column headers in CSV files because they allow you to
refer to data by attribute name instead of column number (with support from
your CSV library). Column headers are more robust than column numbers in in
the presence of column reordering.

XML was all the rage a few years ago for representing (semi) structured data, but
it has fallen out of fashion in some circles because it can be space inefficient and
not so friendly for human consumption. JSON and YAML are human-friendlier
alternatives which are quite good at representing nested data structures. See
the YAML documentation for a comparison of all three formats. Despite its
downsides, XML has some useful characteristics such as schema validation (plus
many standard schemas) and powerful document transformation technology such
as XSLT. If your data is more like a document than a data structure then XML
may still be a better choice.

Use meaningful version numbers

Version numbers allow users to track the provenance of their work. This is
particularly important in science where reproducibility is a primary concern.
Torsten already mentioned the need for version numbers in item 3 his article.
I want to reiterate that point because it is so important and so frequently
overlooked in scientific code. I also want to add that if you are not sure how to
go about versioning then consider the approach of Semantic Versioning.

Strive for context independence

Research centers will often want to install your code from source, and they will
generally want to install it in a location of their own choosing. Ideally your
program’s behaviour should not be context dependent:

e Do not hard-code paths to files (item 6 in Torsten’s list).

¢ Do not make assumptions about your software’s dependencies (item 9 in
Torsten’s list).

e Do not assume that your program will be installed in a specific location.

e Do expect that your program will be run by multiple users concurrently.

e Do allow multiple different versions of your program to be installed on the
same system without interfering with each other.


https://hdfgroup.org/HDF5/
http://en.wikipedia.org/wiki/Comma-separated_values
https://docs.python.org/3/library/csv.html
http://www.w3.org/XML/
http://json.org/
http://yaml.org/
http://yaml.org/spec/1.2/spec.html#id2759572
http://www.w3.org/TR/xslt
http://semver.org/

Where possible you should follow the prevailing software installation conventions.
For example, if your program is written in Python then you should make it a
Python package that can be installed with pip. If your program is in a compiled
language, such as C, then you should use a build tool such as make, and ideally a
configuration tool such as autoconf and related autotools. You may also consider
CMake if building on multiple platforms (such as Windows) is important for
your project.

When developing and testing your code consider using a sandboxing environment
such as Python’s virtualenv. This can help ensure your application does not
depend on idiosyncrasies of your development computer.

Use and document exit status values

It is quite common for scientific code to be used as part of a pipeline (or
workflow), where the outputs of one computation are fed as inputs to another.
Such pipelines can become large and complex and can run for hours or days
on HPC systems, therefore the likelihood of failure is high. One of the worst
things that can happen in a pipeline is for one stage to fail and produce partial
or incorrect results but for subsequent stages to carry on oblivious to the error.
This can lead to data corruption, or much worse, it can produce false results
which go undetected. Most pipeline systems know very little about the programs
they run, so they rely heavily on the exit status of each computation to decide
how to proceed. The Unix convention is that an exit status of zero means
that the computation ran to completion successfully, and any other exit status
means something exceptional happened. Therefore one of the most heinous sins
you can commit in scientific programming is to return a misleading exit status
code, especially so if you return zero when your program failed! You should be
careful to only use a zero exit status when your program has successfully run to
completion. Furthermore you should use different exit status values for different
kinds of errors and be sure to document what they mean.

You can minimise the risk of false exit values by reducing the number of exit
points in your program and by defining exit codes as constants in their own
module.

Generate informative error messages

Few things are more infuriating than cryptic error messages; they tell you that
something went wrong, but little else. Good error messages provide information
that can help the user to find and fix the problem.

Consider the case of a missing file. What might the user need to know?

o What was the name of the file that was missing?


https://pypi.python.org/pypi
http://en.wikipedia.org/wiki/Make_(software)
https://www.gnu.org/software/autoconf/
http://www.cmake.org/
https://pypi.python.org/pypi/virtualenv
http://en.wikipedia.org/wiki/Guru_Meditation

e Where did the program search when it tried to find the file?
e How can the user influence the places that are searched?

Your program might be called from a pipeline or a shell script where its output,
including errors, are mixed together from other programs. Therefore your error
messages should include the name of your program to clearly identify the source
of the error.

Here is a template that caters for many kinds of errors in an informative way:

program—name ERROR: general description of error
What happened.

How the user could fix the problem.
for example, assuming the program is called frobnicate:

frobnicate ERROR: could not find configuration file.

Tried to read configuration file /home/foo/frobnicate.config

File does not exist.

Create a configuration file called /home/foo/frobnicate.config

or specify an alternative path with --config <filename>

Give your users naming rights to their files

For maximum flexibility you should always let users name their input and output
files. This is especially important in pipelines where we want to reason about
the dependencies between computations. Implicit files act as a kind of hidden
state which is invisible to the pipeline infrastructure. This makes it difficult to
fully parameterise each stage of the pipeline, which in turn complicates many
important pipeline features such as:

o Parallelisation of stages.
o Pipeline restarts which avoid the re-execution of up-to-date computations.
o Automatic dependency determination.

If your program reads or writes lots of files then it is unreasonable to require
the user to name them all individually. Unix command line wildcards will often
suffice for inputs, but you will still need to provide a mechanism for naming
outputs. In such circumstances you should let the user specify the naming



pattern used by the files, and perhaps also allow them to specify a directory
containing the files.

Of course default filenames are often convenient, especially for interactive use,
but you should always let the user override the default.

Follow command line argument conventions

Over the years various conventions for command-line argument syntax have
developed, most notably the POSIX guidelines, which are recommended by the
GNU Standards for Command Line Interfaces.

As Torsten says most languages provide a getopts library which makes it easy
to follow the POSIX conventions. Some languages provide even more featureful
libraries, such as argparse in Python.

In the very least your program should provide these two arguments:

e —-version: for printing the version number of your program. Other
programs will want to parse the version number, so just print the version
number and nothing else.

e -h and --help: for printing usage information. Each command line
argument of your program should be explained in simple terms. Try to
avoid jargon and technical terminology. Show default values and any
constraints that may be imposed on arguments.

All argument “flags” should start with a dash character, a single dash for a short
flag and a double dash for a long flag. I recommend providing short and long
flags for each argument, such as --log and -1. The long form is more readable
and meaningful, whereas the short form is more convenient for interactive use.

Options with flags should be able to appear in any order on the command line.
The GNU standards also provide the == (double dash) flag which marks the end
of options; anything following is taken as an operand regardless of whether it
starts with a dash or not.

When deciding what your flags should be called it is a good idea to consider
what has been used before. The GNU project provides a (probably incomplete)
list of long options which have been used in their programs.

Provide test data and a small worked example in your user
documentation

Test data and worked examples give your users a leg-up in getting started with
your program. In research centers the person installing your program is often
a system administrator. A worked example provides them with a quick and


http://pubs.opengroup.org/onlinepubs/9699919799/basedefs/V1_chap12.html
https://www.gnu.org/prep/standards/html_node/Command_002dLine-Interfaces.html
https://docs.python.org/dev/library/argparse.html
https://www.gnu.org/prep/standards/html_node/Option-Table.html#Option-Table

easy way to check that your program is working as expected, and increases their
confidence that the installation went smoothly.

Ideally test data should be sufficiently small that it is not onerous to download
and test computations don’t take too long. However, it should be sufficiently
large to exercise the key parts of the program.



	Ten rules of etiquette for scientific code
	Use a standard license
	Log progress and diagnostics to file
	Standardise on data formats
	Use meaningful version numbers
	Strive for context independence
	Use and document exit status values
	Generate informative error messages
	Give your users naming rights to their files
	Follow command line argument conventions
	Provide test data and a small worked example in your user documentation


