A Program Transformation for Debugging Haskell 98

Bernard Pope

Lee Naish

The Department of Computer Science and Software Engineering
The University of Melbourne,
Victoria 3010, Australia,
Email: bjpop@cs.mu.oz.au lee@cs.mu.o0z.au

Abstract

We present a source-to-source transformation of Haskell 98 pro-
grams for the purpose of debugging. The source code of a pro-
gram is transformed into a new program which, when executed,
computes the value of the original program and a high-level se-
mantics for that computation. The semantics is given by a tree
whose nodes represent function applications that were evalu-
ated during execution. This tree is useful in situations where a
high-level view of a computation is needed, such as declarative
debugging. The main contribution of the paper is the treat-
ment of higher-order functions, which have previously proven
difficult to support in declarative debugging schemes.

1 Introduction

The craft of programming is enhanced by the pro-
vision of quality tools. Unfortunately, the availabil-
ity of debugging tools for non-strict functional lan-
guages is limited, a factor considered detrimental to
their popularity (Wadler 1998). What is the reason
for such paucity? Probably the main technical in-
hibitor is the high level of abstraction such languages
present to the programmer, most notably transpar-
ent operational semantics, polymorphism and higher-
order functions. On the one hand such features are
a boon to productivity. On the other hand the great
divide between language and machine makes it more
difficult to reconcile the execution of a program and
its source code.

The most basic function of a debugger is to present
the evaluation of a program in small chunks. The user
of the debugger compares the actual behavior (as wit-
nessed by the debugger) with the intended behaviour.
Where there is a discrepancy there is a potential bug.
An effective debugging session occurs when the dis-
crepancy is accurately identified with a narrow section
of program text. Before we build a debugger we must
ask ourselves: at what level of abstraction should we
present the evaluation of a program?

We opt for a high-level presentation which is ab-
stracted from the underlying evaluation order, and
closely reflects the syntactic description of the pro-
gram. It is generally difficult for programmers to
adopt a low-level understanding of non-strict func-
tional programs, so the high-level presentation is
quite sensible in this context.

We employ an Evaluation Dependence Tree (EDT)
to represent the evaluation of Haskell 98' programs.

Copyright (©2003, Australian Computer Society, Inc. This
paper appeared at the Twenty-Sixth Australasian Computer
Science Conference (ACSC2003), Adelaide, Australia. Confer-
ences in Research and Practice in Information Technology, Vol.
16. Michael Oudshoorn, Ed. Reproduction for academic, not-
for profit purposes permitted provided this text is included.

Y(Haskell 98 Language Report 2002). Hereafter we drop the 98
from the name.

Nodes in the tree represent function applications,
storing the name (or representation) of the function,
its arguments and result. The EDT is the founda-
tion of many declarative debugging tools, we discuss
a number of these in section 7.

Our technique for producing an EDT is by source-
to-source transformation. The original program text
is transformed into a new program which computes
the value of the original program and produces an
EDT describing that computation. We begin this
paper with a definition of the EDT. We outline the
transformation and consider the difficult matter of
higher-order programming. We then state the com-
plete transformation as a series of equations over an
abstract syntax of the language. We relate our work
to the rest of the field and then conclude. Familiarity
with Haskell is assumed.

2 The Evaluation Dependence Tree

The EDT represents an instance of the evaluation of
a program. Nodes in the tree correspond to function
applications that were made during program evalu-
ation, containing function names and references to
their arguments and result. The static call graph
of the program determines the dependencies between
nodes. Consider the toy program below:

main = (\(x,_) -> x) (foo True False)
foo x y = (not y, not (xor x y))

not True = False

not False = True

xor True x = not x

xor False x = x

Figure 1 illustrates the EDT corresponding to the
evaluation of main. The node for main has two chil-
dren, one for the inner call to foo, and one for the
outer call to the lambda abstraction ‘\(x, _) -> x’,
which extracts the first value from a pair. Lambda ab-
stractions are anonymous when not bound to an iden-
tifier, as above. The textual definition of an anony-
mous lambda abstraction is used to name the function
in the EDT. In all other cases we use the identifier to
which the function is bound. The function foo has
three children corresponding to the two calls to not,
and the one call to xor. The lambda abstraction, not
and xor form the terminals of the tree because they
do not call any other functions.

The arguments and results of applications are
drawn inside the nodes, though in practice we merely
store references to those values. When a node in the
tree is displayed the references are followed and the
values are printed accordingly. Printing can inter-
ract badly with non-strict evaluation. In the exam-
ple program only the first component of the tuple re-
turned by ‘foo True False’is necessary to compute
the value of main. Unevaluated expressions, such as
the second component of the tuple, are shown as ‘?’.

foo True False
= (True, ?)

(\(x,_) =>x) (True, ?)
=True
not False [xor True False = ? j [not ?2=? j
=True

Figure 1: An example EDT.

To accurately represent the computation they must
not be evaluated further.

It is impossible to determine whether an expres-
sion is evaluated from within Haskell. Therefore, to
print values refered to by the EDT we have to mo-
mentarily step outside the confines of pure functional
programming. Our current implementation calls C
code through a foreign function interface. The C code
inspects the Haskell heap and generates a printable
representation of a desired value from the program,
carefully observing which parts of the value are in
evaluated form and which are not. To ensure that
all values are in their final state of evaluation when
viewed, we force the computation of the original pro-
gram to completion before we traverse the EDT. The
inspection of the Haskell heap requires support from
the runtime environment.?

The EDT is implemented with the following type:

data EDT = EDT Exp [Val] Val [EDTI]

The type has one constructor with four arguments:
the name (or representation) of the function involved
in an application; a list of references to the arguments
of an application; a reference to the result of the ap-
plication; and a list of children trees. The types Exp
and Val, for representing functions and references,
are discussed in section 3. Additional information
can be kept in the nodes, such as type annotations,
and source code references, however we do not show
them here.

We have been slighlty lax in our description of the
dependencies between nodes in the tree. In particular
we have overlooked higher-order code. Functions are
first-class in Haskell, which means that they can be
passed as arguments, returned as results and stored
inside data structures. To a certain extent this blurs
the notion of syntactic dependency between function
applications, since the application of a function which
is passed as an argument to another function may
depend on the dynamic behaviour of the program.
We address this issue in section 5.

3 Representing Values in the EDT

The type Val is a reference to a value from a com-
putation. To implement this type we want encap-
sulated polymorphism — internally a reference may
point to a value of any type, but externally that type
should be hidden, so that we can have references to
values of different types in the same tree. This can be
achieved with existential types, which are not part of
the Haskell standard, but are widely supported:

data Val = forall a . V a

The explicit forall occurs in a negative context,
which is the same as existentially quantifying the type
variable ‘a’.

2We have implemented this for the Glasgow Haskell Compiler
(GHC), www.haskell.org/ghc.

ues during the exploration of the EDT. A value is
printed by passing a Val to C code which inspects
and traverses the value’s heap representation. We
provide the following interface to the foreign code:

Val -> I0 O

This function takes a reference to any value and per-
forms a side-effect which prints a representation of the
value. The C code is untyped, so it may freely observe
the representation of the underlying value, regardless
of its type. The impurity of the C code is contained by
making it an I/O action, which in Haskell is denoted
by the type constructor I0. Printing values of prim-
itive type such as Int and Char is straightforward.
Values of composite types such as tuples and alge-
braic types can be printed providing that constructor
names are available, and that there is a mechanism
for traversing the components of the value. Ordinarily
the compiler would not retain the names of construc-
tors in the executable code of the program, however,
in GHC they can be included by special request. The
printer must be able to distinguish between values
which are computed and those which are not, and
it must be able to determine when a value is cyclic.
These capabilities depend on the heap representation
of values used by the compiler, and what facilities the
runtime environment provides for external inspection
of the heap. Thankfully GHC is quite generous in this
respect, and all these requirements are easily fulfilled.
For functional values we make no assumptions about
how they are compiled or their runtime representa-
tion. Instead we explicitly encode a representation
into the program which is derived from the syntax of
the function. If ever a functional value is needed to
be displayed we interpret the encoded representation
which will be stored like any other value on the heap.
We discuss this approach thoroughly in section 5.

The name of a function stored in a node is either
an identifier or a lambda abstraction. We represent
both of these with the data-type Exp:

= Expld Ident

| ExpAp [Expl

| ExpLambda [Pat] Exp
|

|

|

printVal ::

data Exp

ExpLet [Equation] Exp
ExpCase Exp [Alt]
ExpVal Val

This type is an abstract syntax for Haskell expres-
sions, though we have truncated the definition for
brevity. Identifiers are formed by ‘ExpId i’, where
i is a string naming the identifier. Lambda abstrac-
tions are formed by ‘ExpLambda ps e’, where ps are
bound patterns and e is the right-hand-side of the
expression. When a node from the EDT is displayed
the name of the function is pretty-printed, for exam-
ple ‘ExpId "not"’ would be printed as ‘not’. Appli-
cations, let and case expressions are formed by the
ExpAp, ExpLet, and ExpCase constructors. We need
a full abstract syntax, including patterns, alternatives
and equations because we want to be able to show a
complete lambda abstraction which may contain all
of these syntactic constructs. Free variables in an ex-
pression are represented simply as a reference to the
value of the variable by the ExpVal constructor (no-
tice its argument is of type Val). Therefore, pretty
printing an Exp may involve calls to printVal. In the
rest of this paper we presume the existence of a func-
tion, called M, which produces an appropriate value
of type Exp for a given piece of syntax, in practice it
is trivial to implement, and to save space we do not
give its definition. This function will be used exten-
sively when we define the rules of the transformation
in section 6. In section 5 we will revisit the Exp type
when we consider the encoding of functional values.

Each function is transformed to compute its original
value paired with an EDT node. As a first approx-
imation, we might transform the function foo from
our toy program as follows:

foo x y = let (vl, t1) = not y
(v2, t2) = xor x y
(v3, t3) = not v2

result = (vl1, v3)
node = EDT (ExpId "foo")
[V x, Vyl
(V result)
[t1, t2, t3]
in (result, node)

The new right-hand-side constructs an EDT node
(called node). Calls to not and xor are “flattened”
(nested calls are eliminated by introducing new vari-
ables) and their EDTs become the children of the
node for foo. The original value of the function is
bound to the variable result and it is returned in a
pair with node.

The explicit naming and threading of nodes, as in
t1, t2, and t3, is cumbersome, and complicates the
transformation. To avoid this clutter we take advan-
tage of a popular functional idiom called monadic pro-
gramming, whereby, the plumbing of the EDT nodes
in the transformed program can be hidden. The re-
sult is shorter transformation rules, and smaller trans-
formed programs.

Each function is given a new (additional) parame-
ter representing its siblings. When a function is called
it constructs a node and prefixes it onto the list. The
function returns a pair containing its original value
and the new list of nodes (with its own node at the
front). To construct its own node, a function must
collect its children. The children are formed by func-
tion applications that occur on the right-hand-side of
the function definition. A list of nodes is threaded
through the body of the function. Initially the list is
empty. As each child is called a new node is added
to the list, so that all children will appear in the list
when the evaluation of the body is complete.

To accommodate the threading of nodes, the type
of each function is modified to include the new param-
eter and result. If the result of the original function
has type ‘t’, the result of transformed function has
type ‘Comp t’, where Comp is the following type syn-
onym:

type Comp a = [EDT] -> (a, [EDT])

The new functions can be viewed as state trans-
formers, where the state is a list of nodes, and the
transformation of the state involves adding new nodes
to the list. As Wadler and others have shown, mon-
ads offer a neat way to model state transformation
in functional languages (Wadler 1993). Haskell has
some helpful syntax for monads (called do-notation)
that we will use to hide the threading of state through
our transformed program.

To enable the do-notation we need a little bit of
plumbing:

bind :: Comp a -> (a -> Comp b) -> Comp b
bind comp next
= \sl -> case comp sl of
(val, s2) -> next val s2

The role of bind is to join two transformed compu-
tations together by plumbing the state through each
of them. The variable s1 is the initial state, and it
is passed to the first computation resulting in a pair
(val, s2), such that val is the value of the compu-
tation and s2 is the output state. The value and the

A sequence of ‘computations can be joined‘together
by nested applications of bind.
Do-notation has the following syntax:

do{sy; ...
p e |

i Snt, n>0
let d; ...

m €

s € e | dp, n>0

The variables e, p, and d refer to expressions, pat-
terns and declarations, we give their syntax in sec-
tion 6. Essentially, the do-notation is a sequence of
statements (denoted by s). In our context each state-
ment corresponds to a transformed computation. By
overloading the syntax with respect to the bind func-
tion we can write a sequence of computations without
explicit mention of the threaded state. The follow-
ing rules show how do-notation is de-sugared by the
Haskell compiler:

dofe} = e
do{e; stmts} = bind e (A _. do{stmis})
do{p < e;stmts} = bind e (A p . do{stmits})
do{let d;stmts} = let d in do{stmts}

In certain circumstances, such as the evaluation of a
constant, we will need to thread the state through a
computation unmodified. This is done by wrapping
the computation inside a call to return:

return :: a —-> Comp a
return x = \s -> (x, s)

For example, converting the constant True into
‘return True’ results in a passive state transformer
that computes the constant and passes the state un-
changed on to the next computation.

The following function constructs an EDT node:

edt :: Exp -> [Val] -> Comp a -> Comp a
edt f args comp
= do let (v, s) = comp []
add (EDT f args (V v) s)
return v
where add n = \s -> ((), n:s)

It is a state transformer with three arguments: the
name of the function to store in the node (f), a list
of references to the function’s arguments (args), and
the value of the transformed right-hand-side of the
function (comp). An empty list of children is passed
to the transformed right-hand-side, which evaluates
to a pair containing the original value of the compu-
tation (v) and the final list of children (s). A node for
the application is constructed and added to the par-
ent’s list of siblings by the state transformer add. The
original value of the right-hand-side is then returned.

Armed with do-notation, return and edt the
transformation of foo is simplified:

foo x y = edt (ExpId "foo'")
[V x, Vyl
(do vl <- not y
v2 <- X0r X ¥
v3 <- not v2
return (vi, v3))

5 Transforming Higher Order Code

Higher-order programming is fundamental in Haskell
and functions are first-class. Furthermore, functions
in Haskell are curried — multi-argument functions
may be applied to fewer arguments than their arity.
The arity of a function is determined by the number
of patterns it binds on the left-hand-side of its defi-
nition. For example, though ‘xor’ has arity two, it is

True’, the result being a function equivalent to not.
With currying it is possible to create new functions
by partially applying existing ones. Lambda abstrac-
tions allow anonymous functions to be defined, such
as ‘\(x,_) -> x’. These features cause several prob-
lems for transformation-based debugging. Consider
the following code fragment:

(f xy

We might expect that an EDT node for foo has
a child of the form f x y = z. However, this as-
sumes the arity of f is two (the expression is satu-
rated). If the arity is greater, more arguments are
expected (the expression is a partial application or
under-saturated) and the expression is not reduced,
hence there should be no corresponding child of foo
for this application of £. With a smaller arity the
expression is over-saturated and more than one child
should be produced. For example, if £ has arity one,
there should be two children, of the form f x = g
and g y = z. Unfortunately, the arity of £ may be
unknown at transformation time — £ may be an ar-
gument of foo and different calls to foo may have
different arity functions as arguments. An advantage
of using state transformers is that the construction
of the children of foo is not done directly by foo.
It is done by the transformed version of the expres-
sion £ x y, hence avoiding (or at least delaying) the
problem of how many children are constructed.

If £ is an argument of foo another problem oc-
curs. Ultimately we want a printable representation
of the function in each EDT node but we can’t simply
use the string "f" — we need a representation of the
function f is bound to at runtime. It may be bound
to a function g of large arity applied to several val-
ues, and the applications may have been done in dis-
parate parts of the computation. Alternatively, the
function may be defined with a lambda expression.
We cannot expect to derive a reasonable print rep-
resentation for functions from the heap as we do for
first order data structures. While there is a straight-
forward relationship between a list of integers in the
program (say) and the heap representation, the rela-
tionship between a lambda abstraction (which could
be almost the entire program) and its heap represen-
tation is complex to say the least. Even if we wrote
a de-compiler, the result may be unrecognisable to
the programmer. Thus, as mentioned in section 3, we
encode representations of higher-order arguments so
that they may be pretty-printed when we explore the
EDT. Our encoding of £ also allows us to construct
the right number of children of foo.

In this section we first give a simplified descrip-
tion of how under- and over-saturated expressions are
transformed, then describe how function representa-
tions are created and manipulated. We defer discus-
sion of lambda expressions until section 6. We will
use the following two functions as examples:

foo ... = ...

ap :: (@ ->b) ->a->b
ap f x = f x

const :: a -> b -> a
const X y = X

Following from our informal treatment of the trans-
formation in the previous section of the paper, we
might transform each of these respectively to:

ap :: (a -> Comp b) -> a -> Comp b
ap f x = edt (ExpId "ap")
[v £, V x]
(do vl <- f x
return v1)

[ap (const True) 'c’ = True]

|

G:onst True 'c’ = True]

h =True

ap const True (const True 'c’ = True)
= const True

Figure 2: EDTs with higher-order functions

const :: a -> b -> Comp a
const x y = edt (ExpId "const")
[Vx, Vyl
(do return x)

The first argument of ap is a function of type
‘a -> b’. As with all functions, the transformed ver-
sion must be extended to take a list of EDT nodes
as an additional argument, and when applied it must
generate a value and a list of EDT nodes. Therefore,
the type of the first argument must change to reflect
the new behaviour, becoming ‘a -> Comp b’. This is
reflected in the type scheme for ap.

5.1 Under-saturated expressions
Consider g, which uses ap and const:
g = ap (const True) ’c’

The application of const on the right-hand-side of
g is partial — const expects two arguments but
it is only given one. Partial applications are not
reducible expressions, therefore we do not want to
record them in the EDT. Applications which are
known to be partial are therefore treated specially
in the transformation. The type of ‘const True’ is
‘a => Bool’, so in the transformed program it will
become ‘a -> Comp Bool’. We do not flatten this
application, but simply pass it as an argument to ap,
where it will be bound to f:

g = edt (ExpId "g") [I
(do vl <- ap (const True) ’c’
return v1)

The EDT that results from the evaluation of g is
shown in figure 2. Note that the application of const
becomes a child of ap. The reason is as follows. The
variable f is bound to ‘const True’, and the variable
x is bound to ’c’. The application ‘f x’ is therefore
equivalent to ‘const True ’c’’. Thus the expres-
sion ‘f x’ on the right-hand-side of ap corresponds
(at runtime) to a full application of const.

5.2 Over-saturated expressions

The following slightly altered definition offers an in-
teresting comparison:

h = ap const True ’c’

Both h and g denote the same value, yet they are
transformed differently and result in different EDTs.
On the right-hand-side of h, const is partially applied
to zero arguments, where previously it was given one.
Furthermore, in h, ap is given three arguments, when

may return a function as its result. We can make this
explicit with parentheses: ‘(ap const True) ’c’’.
The evaluation of ‘ap const True’ results in a func-
tion, namely ‘const True’, which is then applied to
the character ’c’. The application of const occurs
on the right-hand-side of h, therefore const is a child
of h rather than ap. The EDT resulting from h is
given in figure 2. Transforming h is more challeng-
ing. We defer this task until after we have considered
encoding function representations.

5.3 Printable represenations of functions

We modify the transformation such that when a
higher-order value is created (by partial application,
or by lambda abstraction) a representation of the
function is derived from its source code and paired
with the function. We use the type Exp, introduced
in section 3, to encode the function, and encapsulate
the function and representation in the type F:

data F a b = F (a -> Comp b) Exp

The encapsulated function has type ‘a -> Comp b’
because it it the transformed version of the function
that it refers to. To select the function from the en-
capsulation we use apply:

apply :: Fab->a ->Comp b
apply (F £ _) = £

The type of higher-order arguments must be mod-
ified to reflect the encoding, and applications of en-
coded functions must be preceeded by a call to apply.
Therefore we modify our transformation of ap:

ap :: Fab->a ->Compb
ap f x = edt (ExpId "ap")
[v £, V x]
(do vl <- apply f x
return v1)

Calls to ap will need to provide an encoding of the first
argument. For example, the function ‘const True’,
in the transformed version of g will have to be en-
coded. The representation that we choose is simply
the source code expressed in the Exp type. To assist
the encoding we introduce the function funl which
encodes functions of arity one:

funl :: (a -> Comp b)
-> Exp -> Comp (F a b)

funl f e = return (F f e)

The first argument to funl is the transformed func-

tion, the second is its representation, the result is an

encapsulation of the two, returned in the Comp type

so that it is convenient to use in the do-notation.
The final transformation of g is as follows:

g = edt (ExpId "g") []
(do vl <- funl
(const True)
(ExpAp
[ExpId "const",
ExpId, "True"])
v2 <- ap vl ’c’
return v2)

The expression ‘ExpAp [ExpId "const"...]’, of
type Exp, encodes the function ‘const True’. The
function and its representation are encapsulated by
funl, resulting in a value of type ‘F a Bool’ which
is bound to vl and subsequently given as the first
argument to ap.

Transformation of h requires an encoding of
const, in the expression ‘ap const True’. This is

sult of the application is also a function, namely
‘const True’, which must also be encoded. Clearly
the encoding of the output function is dependent on
the encoding of the input function. Also the encoding
of the output function is dependent on the value of x
which is an argument of ap, and can only be known at
runtime. What we want to do is build up the repre-
sentation of a partial application by adding represen-
tations of new arguments as they are provided (one at
a time). For functions of arity two (such as const),
we encapsulate the function with its representation,
as before with F, but we trasform the function such
that when applied to a value it returns a new encoding
of that application. This whole process is performed
by fun2:

fun2 :: (a -> b -> Comp c)
-> Exp -> Comp (F a (F b ¢))
fun2 f e

= return

(F (\v -=> funl (£ v) (eAp e v)) e)

eAp :: Exp -> a -> Exp
eAp e v = ExpAp [e, ExpVal (V v)]

This is intricate, and best understood by example.
The first argument to fun2 is a (transformed) func-
tion of arity two, and the second argument is its en-
coding. For const we would generate the expression:
‘fun2 const (ExpId "const")’. Expanding the in-
ner lambda abstraction by substituting for £ and e
gives:

\v -> funl (const v)
(eAp (ExpId "comst") v)

and, expanding the call to funl gives:

\v -> return (F (const v)
(eAp (ExpId "comst") v))

and, expanding the call to eAp gives:

\v -> return (F (const v)
(ExpAp [ExpId "const",
ExpVal (V v)1))

The type of this expression is ‘a -> Comp (F b a)’.
Given one argument, this will return an encapsula-
tion of const applied to that argument and a rep-
resentation of that application derived from the rep-
resentation of const. The derived representation is
given by ‘ExpAp [ExpId "const", ExpVal (V v)]’
which constructs an Exp representing the application
of const to whatever the value of v is. In the context
of h, v will eventually be bound to True.
Using fun2 we can transform h as follows:

h = edt (ExpId "h") []
(do vl <- fun2 const
(ExpId "const")
v2 <- ap vl True
v3 <- apply v2 ’c’
return v3)

The variable vl will be bound to
‘F ... (ExpId "const")’, where ‘...’ is the
lambda abstraction unfolded above. The type of

vliis F a (Fba), and it is given as the first
argument to ap, and thus bound to the variable f.
On the right-hand-side of ap, ‘apply £ x’ selects the
function from the encapsulation and applies it to x,
which is bound to True. The result is:

return (F (const True)
(ExpAp [ExpId "const",
ExpVal (V True)l))

tion ‘const True’ and its representation. The
type of which is ‘Comp (F b Bool)’. The outer
call to return simply makes the use of do-
notation convenient. Recall that the result of
‘ap const True’ is a function, the good news
is that after encoding we now have a repre-
sentation of this function that is easy to print:
‘ExpAp [ExpId "const", ExpVal (V True)]’. The
result of ‘ap vl True’ is the encapsulation of
‘const True’ and the above representation, and it
is bound on the right-hand-side of h to v2. The ap-
plication ‘apply v2 ’c’’ retrieves the function from
the encapsulation and applies it to the character ’c’.
This is a full application of const and will result in
a node being inserted into the EDT under h. The
result of the application (True) is bound to v3 and
subsequently returned as the result of h.

So far we have shown how to transform partial ap-
plications of arity one and two. What about higher
aritites? The same principle applies for higher ari-
ties, however, we need a family of functions similar to
fun2:

fun, :: (vy -> ... v, => Comp Vv,41)
-> Exp
-> Comp (F vy (F v, V1) «..)
fun, f e
= return

(F (\v -> fun,_; (£ v) (eAp e v)) e)

A partial application of arity n is encoded by fun,,
however, funl remains as before. The maximum nec-
essary value of n is unknown until we have traversed
the whole program. At the end of transformation
we ensure that the appropriate number of fun,, func-
tions are generated. For most code this number will
be small because high arity functions are uncommon
in human written programs.

The arity of a partial application is simply the
arity of the function being applied minus the num-
ber of arguments in the application. When the func-
tion is named by a variable, we only know its arity
if the variable is bound by the use of =. Such vari-
ables are often called let-bound. However we do not
know the arity of functions that are bound in pat-
terns. Therefore encodings are only made for par-
tial applications of let-bound variables. Of course
pattern variables will be bound to encoded functions
at runtime, and must be decoded (by apply) when
they are applied. In section 6 we will see that the
binding occurrence of a variable will determine how
applications of that variable are transformed. Par-
tial application of data constructors are treated in
a similar way to let-bound functions, since the ar-
ity of constructors can be derived from their defini-
tion. Function applications are over-saturated when
the function is given more arguments than its arity
(such as the application ‘ap const True ’c’’in h).
We break such expressions into a full application of
the function (‘ap const True’) which returns an en-
coded functional result, and residual applications, one
for each of the remaining arguments (in this case just
’c?). The result of all but the last residual applica-
tions will be a new encoded function that must be
decoded by apply before it may be used.

6 The transformation

In this section we state the program transformation
as a series of rules over a core abstract syntax for
Haskell, listed in figure 3. To save space we overlook
syntactic sugar which can be translated into the core
language (such as do-notation, list comprehensions,
guarded equations, and where clauses etc.).

written in italics. We presume the following sets of
variables for the atoms:

f € Type constructors (eg Bool)
v € Type variables (eg a)

x,y € Variables (eg const)
¢ € Data Constructors (eg True)

Syntactic variables are sometimes annotated with
salient attributes: z* denotes a pattern bound vari-
able, ™ denotes a let-bound variable with arity n,
¢" denotes a data-constructor with arity n, and & de-
notes a fresh variable, unique in the scope that is
is introduced. When more than one variable of the
same type is needed we use numeric subscripts to dis-
tinguish them.

The transformation rules are equations written in
a functional style, which collectively can be under-
stood as a pure functional program. FEach rule is
named by an uppercase calligraphic letter. Double
square brackets ‘[]’ enclose arguments which denote
a syntactic entity, such as an expression, or declara-
tion and so on. Terms appearing in typewriter font
are to be interpreted verbatim, for example return
refers to the function of that name defined in sec-
tion 4. Ellipses indicate obvious sequences that do
not require full representation.

6.1 Types

A type is either a type variable, a functional type
from one type to another, or the application of a type
constructor to type arguments:

t € v | t1 — to | ftltn,nZO

Rules 1 — 3 (7) transform types. All occurrences
of the function arrow (—) are replaced by the type
constructor F, to accommodate the encapsulation and
encoding of higher-order values.

6.2 Data Constructor Declarations

A data constructor declaration names the construc-
tor and lists the zero or more type arguments of the
constructor:

k € cty ... t,, n>0

Rule 4 (K) transforms constructor declarations, by
mapping 7 over each of the arguments to the con-
structor.

6.3 Patterns

Patterns are used to bind variables in the arguments
of functions and in case alternatives. They are either
a variable, an as-pattern (a pattern named by a vari-
able), or the application of a data constructor to zero
or more patterns:

p € = | 2@ | ¢cpi...pp,n>0

There are no rules that deal directly with patterns.

6.4 Declarations

A declaration is either a variable with a type anno-
tation (type signature), a function binding, or a alge-
braic type declaration:
d € x ot
TP pn = 6020 |
datafm LU, = ko k}m,

n>0,m>0

Tlol = v (1)

Tlth — t2] = F T[] Tlt2] (2)
Tt -o- tn] = FTIU] ---Ttal (3)
Klety ... tn] = c¢T[t1] ... Tlta] (4)
S 0[t] = Comp (TTt]) %)
Sn [[tl — tz]] = T[[tl]] - S (n—l) [[tz]]
Dlz"™ == t] = = == Sn[t] (6)
Dlzpr ... pp = €] = z5:1Qp1 ... 9,Qp, = edt (M[z]) [V 1, ..., V] (E[e]) (7)
Dldata f vy ... vy = ki ... kp] = data foy ... v, = K[k1] ... K[kn] (8)
Alp = e] = p = &[e] 9)
E[z*] = returnx (10)
E[2°] = = (11)
E[z"] = fun, & (M[z]) (12)
E["] = returnc (13)
Elc"] = fun, (A &1 ... &, . return (¢ &1 ... Z,)) (M[c]) (14)
Ele == t] = E[e] :: Comp (Tt]) (15)
Ellet dy ... d, ine] = let D[di] ... D[d,] in E[e] (16)
E[ApL ... pn.€] = letd = M[Ap1 ... pp . €] in (17)
fun, (A $1Qpy ... §pQpy, . edt & [V g1, ..., V§p] (£e]))
Elcaseeof ay ... ay] = do { & ¢« E[e]; case & of Afai] ... Afan] } (18)
E[z"er ... en]
:do{gl <_5[[61]];---;gmFgﬂemﬂ;xgl---gm} (n:m)
= o (i © Eerl: o G ¢ Elen] T (@ d1 . G Mz s .. en]) (n>m) (19)
= do{ g1 « Eleas -5 Im < Eleml; 21 « TG o0 Gn;
Zy ¢ apply 21 §nt1; 23 < @PPLY 22 §n42; ---; @PPLY Zm—n Um} (n <m)
Elz"e1 ... em]
= do{g « &leals -5 Im « Elem]; 212 < apply = i (20)
Zy ¢ apply 21§25 ...; @pPly Zm—1 m }
Elc" e1 ... em]
= o (i & Elerl: s G ¢ Elen]: return (cir .. Gw) } (n=m) o
= do{gl — E[[61]]5 ey Um E[[em]]E
funp—m (A Gmt1 --- Gn - Teturn (a1 .. Gm Jmt1 --- Un)) Mcer ... en] } (n>m)
Eler ex] = do {1 « Eleals g2 = Elez]; apply §1 G2 } (1 # z,e1 #) (22)

Figure 3: The transformation rules

from rule 5 (S) for signatures.

The transformation of a type signature is depen-
dent on the arity of the variable in the declaration.
Consider: ‘const :: a -=> b -> a’. We can define
const with different numbers of patterns on the left-
hand-side:

const X y = X
const x = \y -> x
const = \x y -> x

The arities of these are two, one and zero respectively.
The type of the transformed function depends on the
type of the right-hand-side of the function declaration
(see rule 7). In these three definitions the type of the
right-hand-side’s are different (a for the first, ‘b -> a’
for the second and ‘a => b -> a’ for the third) be-
cause of the different number of patterns to the left
of =. For a function of arity n, the first n — 1 type
arrows in the spine of the type must be preserved to
account for the n patterns in the definition. That is
the purpose of rule 5 (S). The result of the function
is wrapped in the type Comp because the transformed
function threads a list of EDT nodes, as outlined in
section 4. So although each of the definitions of const
begin with the same type, after transformation their
types are different, namely:

const :: a -> b -> Comp a
const :: a => Comp (F b a)
const :: Comp (F a (F b a)

It may seem counter-intuitive that definitions
which are equivalent in Haskell are transformed dif-
ferently. However, this is inevitable. Although
h and g defined in section 5 are both equiva-
lent to True according to Haskell, these equiva-
lences may not hold in the intended interpretation
of the programmer. EDTs, and the transformations
which generate them, must respect the programmer’s
(mis)conceptions about the program. Although the
definitions of const are very similar, our solution to
the difficult problem of curried functions is to treat
them differently.

Function declarations are transformed by rule 7.
Fresh variables g are introduced to name each of the
function patterns (using as-pattern syntax). The new
variables are used to name the arguments of the func-
tion for the purposes of constructing an EDT node.
This is strictly necessary only when the patterns are
not variables themselves. The new right-hand-side
constructs an EDT for the function by calling edt on
three arguments: the function name (as generated by
M), a list of references to the function’s arguments
(wrapped in the V constructor to make them type
Val), and the transformed original right-hand-side.

Algebraic types are introduced with the keyword
data. A declaration names the type and its argu-
ments and then lists one or more constructor declara-
tions. Each of the constructor declarations is trans-
formed by K.

6.5 Alternatives

Alternatives are the branches of case expressions.
Each alternative consists of a pattern and an expres-
sion. The expression is evaluated if the discriminator
of the case expression matches with the pattern:

a € p—e
Rule 9 (A) transforms patterns by applying £ to the
expression.

An expression is either an application of two expres-
sions, an expression with an type annotation, a vari-
able, a data constructor, a lambda abstraction, a let
expression, or a case expression:

etes | et | x| ¢ |
ApL .. pp-e,n>0 |
letdy ... dyine, n >0 |
caseeof aj ... ap, n >0

Expressions are transformed by rules 10 — 22 (&).
The basic philosophy underlying the transformation
is as follows. All transformed expressions are state
transformers, that is they thread a list of EDT nodes,
and may occur as a statement in the do-notation.
If an expression definitely denotes a functional value
then it must be encoded. If an expression definitely
does not denote a function then it is not encoded,
but may be turned into a state transformer by the
application of return. If a transformed function is
applied, it must be decoded first.

Rule 10 transforms pattern bound variables into
basic state transformers by the application of return.
Rules 11 and 12 transform let-bound variables. If the
variable has arity zero (rule 11), then there is nothing
to be done. Unlike pattern variables, we do not need
to apply return to nullary let-bound variables be-
cause their definitions are transformed, and are thus
already state transformers. If the variable has arity
greater than zero the variable is partially applied, and
thus constitutes a function. As discussed in section 5
partial applications require encoding and encapsula-
tion, this is done by fun,, applied to the variable and
its representation (n is the arity of the variable). The
representation of the variable is generated by M.

Rule 13 transforms nullary constructors. Since
they cannot be functions they do not require encod-
ing and are converted into basic state transformers
by return. Rule 14 transforms constructors of arity
greater than zero, which are functions. Before the
constructor can be encoded it must be turned into
a state transformer, by the use of a lambda abstrac-
tion and a call to return. As with non-nullary let-
bound variables, encoding and encapsulation is done
by fun,, where the representation of the constructor
is generated by M.

Rule 15 transforms expressions with an explicit
type annotation. We include this rule in the pre-
sentation because it offers an important insight into
the relationship between transformed expressions and
their resulting type. In particular, the rule states that
if the original expression has type t, the transformed
expression has type ‘Comp (7[¢])’ — which is a state
transformer, over ¢, where all higher-order arguments
are encoded. The type-correctness of the resulting
program depends on this relationship, and it must
satisfied by all the equations for £.

Let expressions provide local variable declarations
whose scope is restricted to a particular expression.
The transformation of these (rule 16) is straightfor-
ward: all declarations are transformed by rule D, and
the expression is transformed by £.

Rule 17 transforms lambda abstractions. Lambda
abstractions introduce new (anonymous) functions in
place — their use and declaration are given by the same
syntax, unlike let-bound functions whose use and dec-
laration are distinct. Two things must be done for
lambda abstractions: their representation must be
encoded, and the function must be transformed to
produce an EDT in a similar fashion to let-bound
function declarations (see rule 7). The representation

in the EDT, and to represent the whole expression
when it is encoded (in case it is passed as a higher-
order argument). For efficiency we reuse the encoding
generated by M by binding it to the variable Z, allow-
ing the two uses to share the one construction. Note
that Z is the first argument to edt, and also the sec-
ond argument to fun,. The construction of the EDT
node is the same as for let-bound variables, except for
the encoding of the function name.

Case expressions are the primary branching con-
struct in Haskell, and are transformed by rule 18.
They consist of an expression (called the discrimi-
nator) and a number of alternatives. The discrim-
inator is evaluated and compared with the head of
each alternative in turn. The right-hand-side of the
first matching alternative becomes the value of the
whole case expression. The original discriminator is
transformed by £ and its value is bound to the new
variable Z which becomes the discriminator of a new
case expression whose alternatives are transformed by
A.

Function applications are transformed by rules 19
— 22. It would be sufficient if we only gave rule 22,
however this would result in particularly inefficient
programs due to redundant encoding and immediate
decoding of functional values. To avoid this we in-
clude rules 19 — 21 which are specialisations for the
common cases of applications where the function is
either a variable or a data constructor. Further spe-
cialisations are possible, for situations where the func-
tion is a lambda abstraction, a case expression or a
let expression. To simplify the presentation of the
transformation we do not show them here.

Rule 19 transforms applications of let-bound vari-
ables, recall from the discussion in section 5 that such
applications may be saturated, under-saturated, or
over-saturated. The three alternative equations for
rule 19 handle each of these situations respectively.
In all cases the argument expressions are transformed
by &£, the values of which are bound to fresh variables
Y1 ... Um. If the application is saturated the last
statement in the do-notation is simply the application
of the variable to the values of its transformed argu-
ments. If the application is under-saturated the last
statement constructs an encapsulation of the whole
expression and its representation. The arity of the
partial application is n — m where n is the arity of
the variable and m is the number of arguments in the
application, hence fun,,_,, is used to generate the en-
capsulation. As usual M generates a representation
of the application from its syntax. If the application
is over-saturated then the variable is applied to its
expected number of (transformed) arguments. The
result is an encapsulated function, which is bound to
the fresh variable Z;. Each of the residual applica-
tions (including that of 2;) must be performed one
at a time, and the intermediate encapsulated func-
tions must be selected from their encapsulation by
apply. It is worth noting that rules 11 and 12 for
un-applied occurrences of let-bound variables are just
special cases of the first two equations for rule 19,
which can be derived by making the number or argu-
ments in the application zero.

Rule 20 transforms applications of pattern vari-
ables. Each of the arguments in the application is
transformed by £ and the values of each are bound to
fresh variables using the do-notation. Pattern vari-
ables which are applied must be bound to functions,
and those functions will be transformed and encoded.
Due to the transformation of higher-order arguments,
the functions that pattern variables are bound to are
encapsulated in the type F. Thus when we apply the
function we must select it from the encapsulation us-
ing apply. Where there is more than one argument

a time because after encoding the result of each ap-
plication is a new encapsulated function.

Rule 21 transforms applications of data-
constructors. Unlike let-bound variables, data-
constructors cannot be over-saturated, hence there
are only two alternative equations for the application
of constructors, the first is for saturated applications
and the second is for partial applications. In both
cases the transformation follows almost directly from
the one used for let-bound variables, except that the
application must be turned into a state transformer
by return. Again it is worth noting that rules 13
and 14 for un-applied constructors are just special
cases of the two equations for rule 21, and can be
derived by making the number of arguments in the
application zero.

The final rule (22) transforms applications that do
not match the previous three rules, namely applica-
tions of let, case and lambda expressions. The func-
tion and argument are transformed by £ and their
values are bound to fresh variables. Since the left ex-
pression is a function, it will be encapsulated after
transformation and must be selected from the encap-
sulation by apply before it can be applied.

6.7 Type Classes

Haskell also has type classes which allow the defini-
tion of (let-bound) functions to be overloaded with
respect to their type. For example, the function ‘+’
can be used to add two integers, or two floating point
numbers, or any two numerical types for which it has
a corresponding definition. Two changes to our core
syntax are required to include type classes into the
language: qualified types — types are extended with
constraints over type variables to indicate overloaded
entities, and new function binding rules for defin-
ing class interfaces and instances. Handling qual-
ified types is straightforward: leave the constraint
unchanged, and transform the type as usual. Class
instances and declarations are almost always trans-
formed by the normal rules for declarations, how-
ever, in certain circumstances two or more declara-
tions of the one overloaded function may have differ-
ent numbers of patterns and hence different arities.
Our transformation relies on knowing each let-bound
variable’s arity, so we must ensure that all instances
of an overloaded function have the same number of
patterns. Where there is a difference in the arity of
an overloaded function we use the number of arrows in
the spine of the function’s type scheme to determine
the arity of the function and adjust the number of
patterns in each declaration to suit by eta-conversion.

7 Related work

The use of an EDT for declarative debugging is well
known: (Naish & Barbour 1996, Pope 1998, Sparud
1999, Nilsson 2001, Caballero & Rodri’guez-Artalejo
2002). The main detractor of the earlier approaches
being a lack of support for higher-order programming.
We have outlined the difficulty of supporting higher-
order programs in section 5.

The first known complete solution to support-
ing higher-order functions for a declarative debugger
based on program transformation is in (Caballero &
Rodri’guez-Artalejo 2002). They require multiple in-
termediate functions to be introduced into the pro-
gram for every curried function, which we avoid by
treating transformed functions as state transformers.
They also require the creation of empty nodes in the
EDT for partial applications, whereas we only create

tion encodes the representation of higher-order val-
ues, however, they require the names of functions to
be provided by the runtime environment, which is
unreasonable for Haskell. Their transformation is de-
scribed for a very simple functional language, which
does not include let, case or lambda expressions.

Sparud gives a program transformation for declar-
ative debugging of Haskell (Sparud 1999). He pro-
vides a rich set of combinators to simplify the trans-
formed program, and the state transformers in our
work are inspired by this. He does not use the do
notation, though the difference is largely a matter of
presentation. Unfortunately this work only supports
some types of higher-order programming. For print-
ing values, he uses type-classes to provide an over-
loaded function which produces a representation for
values in the program. This still requires support
from the runtime environment to determine whether
an expression is evaluated, or cyclic. In some cases
the overloading will be ambiguous, and it is difficult
to resolve the ambiguity without detailed type infor-
mation during transformation. There is no implemen-
tation available for this work.

Nilsson (Nilsson 2001) uses an instrumented run-
time environment to construct an EDT as a side-effect
of computation. The advantage of this approach is
that it allows for greater access to the runtime repre-
sentation of values. A technique called piecemneal trac-
ing is employed to constrain the memory consumed
by the EDT, by placing an upper limit on the size
of memory occupied by the EDT at any one time.
Re-computation of part of the program is required to
generate branches of the tree that do not fit into mem-
ory. The disadvantage of this approach is the com-
plexity of implementation. A whole new compiler for
a large subset of Haskell was created for the purposes
of providing the necessary instrumented runtime en-
vironment. Our motivation for employing program
transformation is to simplify the implementation of
the debugger and to take advantage of existing com-
piler technology.

A general framework for tracing, debugging and
observing lazy functional computations based on re-
duction histories (or Redex Trails) has been pro-
posed in (Sparud & Runciman 1997b, Sparud &
Runciman 1997a). The trails record a rich amount of
information about a computation and various post-
processing tools have been developed to view the in-
formation in different ways, including declarative de-
bugging (Wallace, Chitil, Brehm & Runciman 2001).
The main cost of recording Redex Trails is the space
required to store the trail, the size of which being pro-
portionate to the duration of the computation. To
cope with the large space requirement, the trail is
serialised and written to file rather than being main-
tained in main memory.

8 Conclusion

Debugging higher-order code would be near impossi-
ble without a means for printing functions in a mean-
ingful way. In this paper we have presented a pro-
gram transformation over a core Haskell syntax for
the purposes of debugging. Our main contribution is
the treatment of higher-order code, as presented in
section 5, where we solve the difficult issue of curried
applications and show how to generate detailed rep-
resentations of them. We support full Haskell, and
only require a small amount of help from the runtime
environment of the compiler. The transformation is
purely syntax directed, and so can be performed with-
out type information which aids efficiency and simpli-
fies its implementation.

paper suffers from one significant drawback: exces-
sive space usage. Creating a node in the EDT for
every function application (even if lazily) maintains
a reference to all intermediate values in the compu-
tation, prohibiting garbage collection. Mechanisms
for reducing the size of the EDT are essential if the
debugger is to be useful for large programs. This is
a significant focus of our future research. The cur-
rent implementation of our debugger is available from:
WWW.cs.mu.oz.au/ "bjpop/buddha

References

Caballero, R. & Rodri’guez-Artalejo, M. (2002), A
declarative debugging system for lazy functional
logic programs, in M. Hanus, ed., ‘Electronic
Notes in Theoretical Computer Science’, Vol. 64,
Elsevier Science Publishers.

Haskell 98 Language Report (2002),
http://www.haskell.org/onlinereport.

Naish, L. & Barbour, T. (1996), ‘Towards a portable
lazy functional declarative debugger’, Australian

Computer Science Communications 18(1), 401-
408.

Nilsson, H. (2001), ‘How to look busy while being
as lazy as ever: The implementation of a lazy
functional debugger’, Journal of Functional Pro-
gramming 11(6), 629-671.

Pope, B. (1998), Buddha: A declarative debugger for
Haskell, Technical Report 98/12, The Depart-
ment of Computer Science and Software Engi-
neering, The University of Melbourne.

Sparud, J. (1999), Tracing and Debugging Lazy Func-
tional Computations, PhD thesis, Chalmers Uni-
versity of Technology, Sweden.

Sparud, J. & Runciman, C. (19974), Complete and
partial redex trails of functional computations,
in T. D. C. Clack, K. Hammond, ed., ‘Selected
papers from 9th International Workshop on the
Implementation of Functional Languages’, Vol.
LNCS 1467, pp. 160-177.

Sparud, J. & Runciman, C. (1997b), Tracing lazy
functional computations using redex trails, in
‘PLILP’, pp. 291-308.

Wadler, P. (1993), Monads for functional program-
ming, in M. Broy, ed., ‘Program Design Calculi:
Proceedings of the 1992 Marktoberdorf Interna-
tional Summer School’, Springer-Verlag.

Wadler, P. (1998), ‘Why no one uses functional lan-
guages’, SIGPLAN Notices 33(8), 23-27.

Wallace, M., Chitil, O., Brehm, T. & Runciman,
C. (2001), Multiple-view tracing for Haskell: a
new hat, in ‘Preliminary Proceedings of the 2001
ACM SIGPLAN Haskell Workshop’, pp. 151-
170.

