
A Program Transformation for Debugging Haskell 98Bernard Pope Lee NaishThe Department of Computer Siene and Software EngineeringThe University of Melbourne,Vitoria 3010, Australia,Email: bjpop�s.mu.oz.au lee�s.mu.oz.au
AbstratWe present a soure-to-soure transformation of Haskell 98 pro-grams for the purpose of debugging. The soure ode of a pro-gram is transformed into a new program whih, when exeuted,omputes the value of the original program and a high-level se-mantis for that omputation. The semantis is given by a treewhose nodes represent funtion appliations that were evalu-ated during exeution. This tree is useful in situations where ahigh-level view of a omputation is needed, suh as delarativedebugging. The main ontribution of the paper is the treat-ment of higher-order funtions, whih have previously provendiÆult to support in delarative debugging shemes.1 IntrodutionThe raft of programming is enhaned by the pro-vision of quality tools. Unfortunately, the availabil-ity of debugging tools for non-strit funtional lan-guages is limited, a fator onsidered detrimental totheir popularity (Wadler 1998). What is the reasonfor suh pauity? Probably the main tehnial in-hibitor is the high level of abstration suh languagespresent to the programmer, most notably transpar-ent operational semantis, polymorphism and higher-order funtions. On the one hand suh features area boon to produtivity. On the other hand the greatdivide between language and mahine makes it morediÆult to reonile the exeution of a program andits soure ode.The most basi funtion of a debugger is to presentthe evaluation of a program in small hunks. The userof the debugger ompares the atual behavior (as wit-nessed by the debugger) with the intended behaviour.Where there is a disrepany there is a potential bug.An e�etive debugging session ours when the dis-repany is aurately identi�ed with a narrow setionof program text. Before we build a debugger we mustask ourselves: at what level of abstration should wepresent the evaluation of a program?We opt for a high-level presentation whih is ab-strated from the underlying evaluation order, andlosely reets the syntati desription of the pro-gram. It is generally diÆult for programmers toadopt a low-level understanding of non-strit fun-tional programs, so the high-level presentation isquite sensible in this ontext.We employ an Evaluation Dependene Tree (EDT)to represent the evaluation of Haskell 981 programs.Copyright ©2003, Australian Computer Soiety, In. Thispaper appeared at the Twenty-Sixth Australasian ComputerSiene Conferene (ACSC2003), Adelaide, Australia. Confer-enes in Researh and Pratie in Information Tehnology, Vol.16. Mihael Oudshoorn, Ed. Reprodution for aademi, not-for pro�t purposes permitted provided this text is inluded.1(Haskell 98 Language Report 2002). Hereafter we drop the 98from the name.

Nodes in the tree represent funtion appliations,storing the name (or representation) of the funtion,its arguments and result. The EDT is the founda-tion of many delarative debugging tools, we disussa number of these in setion 7.Our tehnique for produing an EDT is by soure-to-soure transformation. The original program textis transformed into a new program whih omputesthe value of the original program and produes anEDT desribing that omputation. We begin thispaper with a de�nition of the EDT. We outline thetransformation and onsider the diÆult matter ofhigher-order programming. We then state the om-plete transformation as a series of equations over anabstrat syntax of the language. We relate our workto the rest of the �eld and then onlude. Familiaritywith Haskell is assumed.2 The Evaluation Dependene TreeThe EDT represents an instane of the evaluation ofa program. Nodes in the tree orrespond to funtionappliations that were made during program evalu-ation, ontaining funtion names and referenes totheir arguments and result. The stati all graphof the program determines the dependenies betweennodes. Consider the toy program below:main = (\(x,_) -> x) (foo True False)foo x y = (not y, not (xor x y))not True = Falsenot False = Truexor True x = not xxor False x = xFigure 1 illustrates the EDT orresponding to theevaluation of main. The node for main has two hil-dren, one for the inner all to foo, and one for theouter all to the lambda abstration `\(x, _) -> x',whih extrats the �rst value from a pair. Lambda ab-strations are anonymous when not bound to an iden-ti�er, as above. The textual de�nition of an anony-mous lambda abstration is used to name the funtionin the EDT. In all other ases we use the identi�er towhih the funtion is bound. The funtion foo hasthree hildren orresponding to the two alls to not,and the one all to xor. The lambda abstration, notand xor form the terminals of the tree beause theydo not all any other funtions.The arguments and results of appliations aredrawn inside the nodes, though in pratie we merelystore referenes to those values. When a node in thetree is displayed the referenes are followed and thevalues are printed aordingly. Printing an inter-rat badly with non-strit evaluation. In the exam-ple program only the �rst omponent of the tuple re-turned by `foo True False' is neessary to omputethe value of main. Unevaluated expressions, suh asthe seond omponent of the tuple, are shown as `?'.

main = True

not False
= True

= True
(\(x,_) −> x) (True, ?)

not ? = ?

 = (True, ?)
foo True False

xor True False = ?Figure 1: An example EDT.To aurately represent the omputation they mustnot be evaluated further.It is impossible to determine whether an expres-sion is evaluated from within Haskell. Therefore, toprint values refered to by the EDT we have to mo-mentarily step outside the on�nes of pure funtionalprogramming. Our urrent implementation alls Code through a foreign funtion interfae. The C odeinspets the Haskell heap and generates a printablerepresentation of a desired value from the program,arefully observing whih parts of the value are inevaluated form and whih are not. To ensure thatall values are in their �nal state of evaluation whenviewed, we fore the omputation of the original pro-gram to ompletion before we traverse the EDT. Theinspetion of the Haskell heap requires support fromthe runtime environment.2The EDT is implemented with the following type:data EDT = EDT Exp [Val℄ Val [EDT℄The type has one onstrutor with four arguments:the name (or representation) of the funtion involvedin an appliation; a list of referenes to the argumentsof an appliation; a referene to the result of the ap-pliation; and a list of hildren trees. The types Expand Val, for representing funtions and referenes,are disussed in setion 3. Additional informationan be kept in the nodes, suh as type annotations,and soure ode referenes, however we do not showthem here.We have been slighlty lax in our desription of thedependenies between nodes in the tree. In partiularwe have overlooked higher-order ode. Funtions are�rst-lass in Haskell, whih means that they an bepassed as arguments, returned as results and storedinside data strutures. To a ertain extent this blursthe notion of syntati dependeny between funtionappliations, sine the appliation of a funtion whihis passed as an argument to another funtion maydepend on the dynami behaviour of the program.We address this issue in setion 5.3 Representing Values in the EDTThe type Val is a referene to a value from a om-putation. To implement this type we want enap-sulated polymorphism | internally a referene maypoint to a value of any type, but externally that typeshould be hidden, so that we an have referenes tovalues of di�erent types in the same tree. This an beahieved with existential types, whih are not part ofthe Haskell standard, but are widely supported:data Val = forall a . V aThe expliit forall ours in a negative ontext,whih is the same as existentially quantifying the typevariable `a'.2We have implemented this for the Glasgow Haskell Compiler(GHC), www.haskell.org/gh.

Referenes are kept for the purpose of printing val-ues during the exploration of the EDT. A value isprinted by passing a Val to C ode whih inspetsand traverses the value's heap representation. Weprovide the following interfae to the foreign ode:printVal :: Val -> IO ()This funtion takes a referene to any value and per-forms a side-e�et whih prints a representation of thevalue. The C ode is untyped, so it may freely observethe representation of the underlying value, regardlessof its type. The impurity of the C ode is ontained bymaking it an I/O ation, whih in Haskell is denotedby the type onstrutor IO. Printing values of prim-itive type suh as Int and Char is straightforward.Values of omposite types suh as tuples and alge-brai types an be printed providing that onstrutornames are available, and that there is a mehanismfor traversing the omponents of the value. Ordinarilythe ompiler would not retain the names of onstru-tors in the exeutable ode of the program, however,in GHC they an be inluded by speial request. Theprinter must be able to distinguish between valueswhih are omputed and those whih are not, andit must be able to determine when a value is yli.These apabilities depend on the heap representationof values used by the ompiler, and what failities theruntime environment provides for external inspetionof the heap. Thankfully GHC is quite generous in thisrespet, and all these requirements are easily ful�lled.For funtional values we make no assumptions abouthow they are ompiled or their runtime representa-tion. Instead we expliitly enode a representationinto the program whih is derived from the syntax ofthe funtion. If ever a funtional value is needed tobe displayed we interpret the enoded representationwhih will be stored like any other value on the heap.We disuss this approah thoroughly in setion 5.The name of a funtion stored in a node is eitheran identi�er or a lambda abstration. We representboth of these with the data-type Exp:data Exp = ExpId Ident| ExpAp [Exp℄| ExpLambda [Pat℄ Exp| ExpLet [Equation℄ Exp| ExpCase Exp [Alt℄| ExpVal ValThis type is an abstrat syntax for Haskell expres-sions, though we have trunated the de�nition forbrevity. Identi�ers are formed by `ExpId i ', wherei is a string naming the identi�er. Lambda abstra-tions are formed by `ExpLambda ps e', where ps arebound patterns and e is the right-hand-side of theexpression. When a node from the EDT is displayedthe name of the funtion is pretty-printed, for exam-ple `ExpId "not"' would be printed as `not '. Appli-ations, let and ase expressions are formed by theExpAp, ExpLet, and ExpCase onstrutors. We needa full abstrat syntax, inluding patterns, alternativesand equations beause we want to be able to show aomplete lambda abstration whih may ontain allof these syntati onstruts. Free variables in an ex-pression are represented simply as a referene to thevalue of the variable by the ExpVal onstrutor (no-tie its argument is of type Val). Therefore, prettyprinting an Exp may involve alls to printVal. In therest of this paper we presume the existene of a fun-tion, alledM, whih produes an appropriate valueof type Exp for a given piee of syntax, in pratie itis trivial to implement, and to save spae we do notgive its de�nition. This funtion will be used exten-sively when we de�ne the rules of the transformationin setion 6. In setion 5 we will revisit the Exp typewhen we onsider the enoding of funtional values.

4 Outline of the TransformationEah funtion is transformed to ompute its originalvalue paired with an EDT node. As a �rst approx-imation, we might transform the funtion foo fromour toy program as follows:foo x y = let (v1, t1) = not y(v2, t2) = xor x y(v3, t3) = not v2result = (v1, v3)node = EDT (ExpId "foo")[V x, V y℄(V result)[t1, t2, t3℄in (result, node)The new right-hand-side onstruts an EDT node(alled node). Calls to not and xor are \attened"(nested alls are eliminated by introduing new vari-ables) and their EDTs beome the hildren of thenode for foo. The original value of the funtion isbound to the variable result and it is returned in apair with node.The expliit naming and threading of nodes, as int1, t2, and t3, is umbersome, and ompliates thetransformation. To avoid this lutter we take advan-tage of a popular funtional idiom alledmonadi pro-gramming, whereby, the plumbing of the EDT nodesin the transformed program an be hidden. The re-sult is shorter transformation rules, and smaller trans-formed programs.Eah funtion is given a new (additional) parame-ter representing its siblings. When a funtion is alledit onstruts a node and pre�xes it onto the list. Thefuntion returns a pair ontaining its original valueand the new list of nodes (with its own node at thefront). To onstrut its own node, a funtion mustollet its hildren. The hildren are formed by fun-tion appliations that our on the right-hand-side ofthe funtion de�nition. A list of nodes is threadedthrough the body of the funtion. Initially the list isempty. As eah hild is alled a new node is addedto the list, so that all hildren will appear in the listwhen the evaluation of the body is omplete.To aommodate the threading of nodes, the typeof eah funtion is modi�ed to inlude the new param-eter and result. If the result of the original funtionhas type `t', the result of transformed funtion hastype `Comp t', where Comp is the following type syn-onym:type Comp a = [EDT℄ -> (a, [EDT℄)The new funtions an be viewed as state trans-formers, where the state is a list of nodes, and thetransformation of the state involves adding new nodesto the list. As Wadler and others have shown, mon-ads o�er a neat way to model state transformationin funtional languages (Wadler 1993). Haskell hassome helpful syntax for monads (alled do-notation)that we will use to hide the threading of state throughour transformed program.To enable the do-notation we need a little bit ofplumbing:bind :: Comp a -> (a -> Comp b) -> Comp bbind omp next= \s1 -> ase omp s1 of(val, s2) -> next val s2The role of bind is to join two transformed ompu-tations together by plumbing the state through eahof them. The variable s1 is the initial state, and itis passed to the �rst omputation resulting in a pair(val, s2), suh that val is the value of the ompu-tation and s2 is the output state. The value and the

state are then passed on to the seond omputation.A sequene of omputations an be joined togetherby nested appliations of bind.Do-notation has the following syntax:m 2 dofs1; : : : ; sng; n > 0s 2 e j p e j let d1 : : : dn; n > 0The variables e, p, and d refer to expressions, pat-terns and delarations, we give their syntax in se-tion 6. Essentially, the do-notation is a sequene ofstatements (denoted by s). In our ontext eah state-ment orresponds to a transformed omputation. Byoverloading the syntax with respet to the bind fun-tion we an write a sequene of omputations withoutexpliit mention of the threaded state. The follow-ing rules show how do-notation is de-sugared by theHaskell ompiler: dofeg = edofe; stmtsg = bind e (� : dofstmtsg)dofp e; stmtsg = bind e (� p : dofstmtsg)doflet d; stmtsg = let d in dofstmtsgIn ertain irumstanes, suh as the evaluation of aonstant, we will need to thread the state through aomputation unmodi�ed. This is done by wrappingthe omputation inside a all to return:return :: a -> Comp areturn x = \s -> (x, s)For example, onverting the onstant True into`return True' results in a passive state transformerthat omputes the onstant and passes the state un-hanged on to the next omputation.The following funtion onstruts an EDT node:edt :: Exp -> [Val℄ -> Comp a -> Comp aedt f args omp= do let (v, s) = omp [℄add (EDT f args (V v) s)return vwhere add n = \s -> ((), n:s)It is a state transformer with three arguments: thename of the funtion to store in the node (f), a listof referenes to the funtion's arguments (args), andthe value of the transformed right-hand-side of thefuntion (omp). An empty list of hildren is passedto the transformed right-hand-side, whih evaluatesto a pair ontaining the original value of the ompu-tation (v) and the �nal list of hildren (s). A node forthe appliation is onstruted and added to the par-ent's list of siblings by the state transformer add. Theoriginal value of the right-hand-side is then returned.Armed with do-notation, return and edt thetransformation of foo is simpli�ed:foo x y = edt (ExpId "foo")[V x, V y℄(do v1 <- not yv2 <- xor x yv3 <- not v2return (v1, v3))5 Transforming Higher Order CodeHigher-order programming is fundamental in Haskelland funtions are �rst-lass. Furthermore, funtionsin Haskell are urried | multi-argument funtionsmay be applied to fewer arguments than their arity.The arity of a funtion is determined by the numberof patterns it binds on the left-hand-side of its de�-nition. For example, though `xor' has arity two, it is

possible to apply it to only one argument, suh as `xorTrue', the result being a funtion equivalent to not.With urrying it is possible to reate new funtionsby partially applying existing ones. Lambda abstra-tions allow anonymous funtions to be de�ned, suhas `\(x,_) -> x'. These features ause several prob-lems for transformation-based debugging. Considerthe following ode fragment:foo ... = ... (f x y)We might expet that an EDT node for foo hasa hild of the form f x y = z. However, this as-sumes the arity of f is two (the expression is satu-rated). If the arity is greater, more arguments areexpeted (the expression is a partial appliation orunder-saturated) and the expression is not redued,hene there should be no orresponding hild of foofor this appliation of f. With a smaller arity theexpression is over-saturated and more than one hildshould be produed. For example, if f has arity one,there should be two hildren, of the form f x = gand g y = z. Unfortunately, the arity of f may beunknown at transformation time | f may be an ar-gument of foo and di�erent alls to foo may havedi�erent arity funtions as arguments. An advantageof using state transformers is that the onstrutionof the hildren of foo is not done diretly by foo.It is done by the transformed version of the expres-sion f x y, hene avoiding (or at least delaying) theproblem of how many hildren are onstruted.If f is an argument of foo another problem o-urs. Ultimately we want a printable representationof the funtion in eah EDT node but we an't simplyuse the string "f" | we need a representation of thefuntion f is bound to at runtime. It may be boundto a funtion g of large arity applied to several val-ues, and the appliations may have been done in dis-parate parts of the omputation. Alternatively, thefuntion may be de�ned with a lambda expression.We annot expet to derive a reasonable print rep-resentation for funtions from the heap as we do for�rst order data strutures. While there is a straight-forward relationship between a list of integers in theprogram (say) and the heap representation, the rela-tionship between a lambda abstration (whih ouldbe almost the entire program) and its heap represen-tation is omplex to say the least. Even if we wrotea de-ompiler, the result may be unreognisable tothe programmer. Thus, as mentioned in setion 3, weenode representations of higher-order arguments sothat they may be pretty-printed when we explore theEDT. Our enoding of f also allows us to onstrutthe right number of hildren of foo.In this setion we �rst give a simpli�ed desrip-tion of how under- and over-saturated expressions aretransformed, then desribe how funtion representa-tions are reated and manipulated. We defer disus-sion of lambda expressions until setion 6. We willuse the following two funtions as examples:ap :: (a -> b) -> a -> bap f x = f xonst :: a -> b -> aonst x y = xFollowing from our informal treatment of the trans-formation in the previous setion of the paper, wemight transform eah of these respetively to:ap :: (a -> Comp b) -> a -> Comp bap f x = edt (ExpId "ap")[V f, V x℄(do v1 <- f xreturn v1)

ap (const True) ’c’ = True

const True ’c’ = True

const True ’c’ = Trueap const True

= const True

h = True

g = True

Figure 2: EDTs with higher-order funtionsonst :: a -> b -> Comp aonst x y = edt (ExpId "onst")[V x, V y℄(do return x)The �rst argument of ap is a funtion of type`a -> b'. As with all funtions, the transformed ver-sion must be extended to take a list of EDT nodesas an additional argument, and when applied it mustgenerate a value and a list of EDT nodes. Therefore,the type of the �rst argument must hange to reetthe new behaviour, beoming `a -> Comp b'. This isreeted in the type sheme for ap.5.1 Under-saturated expressionsConsider g, whih uses ap and onst:g = ap (onst True) ''The appliation of onst on the right-hand-side ofg is partial | onst expets two arguments butit is only given one. Partial appliations are notreduible expressions, therefore we do not want toreord them in the EDT. Appliations whih areknown to be partial are therefore treated speiallyin the transformation. The type of `onst True' is`a -> Bool', so in the transformed program it willbeome `a -> Comp Bool'. We do not atten thisappliation, but simply pass it as an argument to ap,where it will be bound to f:g = edt (ExpId "g") [℄(do v1 <- ap (onst True) ''return v1)The EDT that results from the evaluation of g isshown in �gure 2. Note that the appliation of onstbeomes a hild of ap. The reason is as follows. Thevariable f is bound to `onst True', and the variablex is bound to ''. The appliation `f x' is thereforeequivalent to `onst True '''. Thus the expres-sion `f x' on the right-hand-side of ap orresponds(at runtime) to a full appliation of onst.5.2 Over-saturated expressionsThe following slightly altered de�nition o�ers an in-teresting omparison:h = ap onst True ''Both h and g denote the same value, yet they aretransformed di�erently and result in di�erent EDTs.On the right-hand-side of h, onst is partially appliedto zero arguments, where previously it was given one.Furthermore, in h, ap is given three arguments, when

we only expet it to have two. This is valid beause apmay return a funtion as its result. We an make thisexpliit with parentheses: `(ap onst True) '''.The evaluation of `ap onst True' results in a fun-tion, namely `onst True', whih is then applied tothe harater ''. The appliation of onst ourson the right-hand-side of h, therefore onst is a hildof h rather than ap. The EDT resulting from h isgiven in �gure 2. Transforming h is more halleng-ing. We defer this task until after we have onsideredenoding funtion representations.5.3 Printable represenations of funtionsWe modify the transformation suh that when ahigher-order value is reated (by partial appliation,or by lambda abstration) a representation of thefuntion is derived from its soure ode and pairedwith the funtion. We use the type Exp, introduedin setion 3, to enode the funtion, and enapsulatethe funtion and representation in the type F:data F a b = F (a -> Comp b) ExpThe enapsulated funtion has type `a -> Comp b'beause it it the transformed version of the funtionthat it refers to. To selet the funtion from the en-apsulation we use apply:apply :: F a b -> a -> Comp bapply (F f _) = fThe type of higher-order arguments must be mod-i�ed to reet the enoding, and appliations of en-oded funtions must be preeeded by a all to apply.Therefore we modify our transformation of ap:ap :: F a b -> a -> Comp bap f x = edt (ExpId "ap")[V f, V x℄(do v1 <- apply f xreturn v1)Calls to apwill need to provide an enoding of the �rstargument. For example, the funtion `onst True',in the transformed version of g will have to be en-oded. The representation that we hoose is simplythe soure ode expressed in the Exp type. To assistthe enoding we introdue the funtion fun1 whihenodes funtions of arity one:fun1 :: (a -> Comp b)-> Exp -> Comp (F a b)fun1 f e = return (F f e)The �rst argument to fun1 is the transformed fun-tion, the seond is its representation, the result is anenapsulation of the two, returned in the Comp typeso that it is onvenient to use in the do-notation.The �nal transformation of g is as follows:g = edt (ExpId "g") [℄(do v1 <- fun1(onst True)(ExpAp[ExpId "onst",ExpId, "True"℄)v2 <- ap v1 ''return v2)The expression `ExpAp [ExpId "onst"...℄', oftype Exp, enodes the funtion `onst True'. Thefuntion and its representation are enapsulated byfun1, resulting in a value of type `F a Bool' whihis bound to v1 and subsequently given as the �rstargument to ap.Transformation of h requires an enoding ofonst, in the expression `ap onst True'. This is

straightforward: `ExpId "onst"'. However, the re-sult of the appliation is also a funtion, namely`onst True', whih must also be enoded. Clearlythe enoding of the output funtion is dependent onthe enoding of the input funtion. Also the enodingof the output funtion is dependent on the value of xwhih is an argument of ap, and an only be known atruntime. What we want to do is build up the repre-sentation of a partial appliation by adding represen-tations of new arguments as they are provided (one ata time). For funtions of arity two (suh as onst),we enapsulate the funtion with its representation,as before with F, but we trasform the funtion suhthat when applied to a value it returns a new enodingof that appliation. This whole proess is performedby fun2:fun2 :: (a -> b -> Comp)-> Exp -> Comp (F a (F b))fun2 f e= return(F (\v -> fun1 (f v) (eAp e v)) e)eAp :: Exp -> a -> ExpeAp e v = ExpAp [e, ExpVal (V v)℄This is intriate, and best understood by example.The �rst argument to fun2 is a (transformed) fun-tion of arity two, and the seond argument is its en-oding. For onst we would generate the expression:`fun2 onst (ExpId "onst")'. Expanding the in-ner lambda abstration by substituting for f and egives:\v -> fun1 (onst v)(eAp (ExpId "onst") v)and, expanding the all to fun1 gives:\v -> return (F (onst v)(eAp (ExpId "onst") v))and, expanding the all to eAp gives:\v -> return (F (onst v)(ExpAp [ExpId "onst",ExpVal (V v)℄))The type of this expression is `a -> Comp (F b a)'.Given one argument, this will return an enapsula-tion of onst applied to that argument and a rep-resentation of that appliation derived from the rep-resentation of onst. The derived representation isgiven by `ExpAp [ExpId "onst", ExpVal (V v)℄'whih onstruts an Exp representing the appliationof onst to whatever the value of v is. In the ontextof h, v will eventually be bound to True.Using fun2 we an transform h as follows:h = edt (ExpId "h") [℄(do v1 <- fun2 onst(ExpId "onst")v2 <- ap v1 Truev3 <- apply v2 ''return v3)The variable v1 will be bound to`F ... (ExpId "onst")', where `...' is thelambda abstration unfolded above. The type ofv1 is `F a (F b a)', and it is given as the �rstargument to ap, and thus bound to the variable f.On the right-hand-side of ap, `apply f x' selets thefuntion from the enapsulation and applies it to x,whih is bound to True. The result is:return (F (onst True)(ExpAp [ExpId "onst",ExpVal (V True)℄))

whih is an eapsulation of the partial applia-tion `onst True' and its representation. Thetype of whih is `Comp (F b Bool)'. The outerall to return simply makes the use of do-notation onvenient. Reall that the result of`ap onst True' is a funtion, the good newsis that after enoding we now have a repre-sentation of this funtion that is easy to print:`ExpAp [ExpId "onst", ExpVal (V True)℄'. Theresult of `ap v1 True' is the enapsulation of`onst True' and the above representation, and itis bound on the right-hand-side of h to v2. The ap-pliation `apply v2 ''' retrieves the funtion fromthe enapsulation and applies it to the harater ''.This is a full appliation of onst and will result ina node being inserted into the EDT under h. Theresult of the appliation (True) is bound to v3 andsubsequently returned as the result of h.So far we have shown how to transform partial ap-pliations of arity one and two. What about higheraritites? The same priniple applies for higher ari-ties, however, we need a family of funtions similar tofun2:funn :: (v1 -> ... vn -> Comp vn+1)-> Exp-> Comp (F v1 ... (F vn vn+1) ...)funn f e= return(F (\v -> funn�1 (f v) (eAp e v)) e)A partial appliation of arity n is enoded by funn,however, fun1 remains as before. The maximum ne-essary value of n is unknown until we have traversedthe whole program. At the end of transformationwe ensure that the appropriate number of funn fun-tions are generated. For most ode this number willbe small beause high arity funtions are unommonin human written programs.The arity of a partial appliation is simply thearity of the funtion being applied minus the num-ber of arguments in the appliation. When the fun-tion is named by a variable, we only know its arityif the variable is bound by the use of =. Suh vari-ables are often alled let-bound. However we do notknow the arity of funtions that are bound in pat-terns. Therefore enodings are only made for par-tial appliations of let-bound variables. Of oursepattern variables will be bound to enoded funtionsat runtime, and must be deoded (by apply) whenthey are applied. In setion 6 we will see that thebinding ourrene of a variable will determine howappliations of that variable are transformed. Par-tial appliation of data onstrutors are treated ina similar way to let-bound funtions, sine the ar-ity of onstrutors an be derived from their de�ni-tion. Funtion appliations are over-saturated whenthe funtion is given more arguments than its arity(suh as the appliation `ap onst True ''' in h).We break suh expressions into a full appliation ofthe funtion (`ap onst True') whih returns an en-oded funtional result, and residual appliations, onefor eah of the remaining arguments (in this ase just''). The result of all but the last residual applia-tions will be a new enoded funtion that must bedeoded by apply before it may be used.6 The transformationIn this setion we state the program transformationas a series of rules over a ore abstrat syntax forHaskell, listed in �gure 3. To save spae we overlooksyntati sugar whih an be translated into the orelanguage (suh as do-notation, list omprehensions,guarded equations, and where lauses et.).

Variables whih range over syntati entities arewritten in italis. We presume the following sets ofvariables for the atoms:f 2 Type onstrutors (eg Bool)v 2 Type variables (eg a)x; y 2 Variables (eg onst) 2 Data Construtors (eg True)Syntati variables are sometimes annotated withsalient attributes: x? denotes a pattern bound vari-able, xn denotes a let-bound variable with arity n,n denotes a data-onstrutor with arity n, and x̂ de-notes a fresh variable, unique in the sope that isis introdued. When more than one variable of thesame type is needed we use numeri subsripts to dis-tinguish them.The transformation rules are equations written ina funtional style, whih olletively an be under-stood as a pure funtional program. Eah rule isnamed by an upperase alligraphi letter. Doublesquare brakets `[℄' enlose arguments whih denotea syntati entity, suh as an expression, or delara-tion and so on. Terms appearing in typewriter fontare to be interpreted verbatim, for example returnrefers to the funtion of that name de�ned in se-tion 4. Ellipses indiate obvious sequenes that donot require full representation.6.1 TypesA type is either a type variable, a funtional typefrom one type to another, or the appliation of a typeonstrutor to type arguments:t 2 v j t1 ! t2 j f t1 : : : tn; n � 0Rules 1 { 3 (T) transform types. All ourrenesof the funtion arrow (!) are replaed by the typeonstrutor F, to aommodate the enapsulation andenoding of higher-order values.6.2 Data Construtor DelarationsA data onstrutor delaration names the onstru-tor and lists the zero or more type arguments of theonstrutor: k 2 t1 : : : tn; n � 0Rule 4 (K) transforms onstrutor delarations, bymapping T over eah of the arguments to the on-strutor.6.3 PatternsPatterns are used to bind variables in the argumentsof funtions and in ase alternatives. They are eithera variable, an as-pattern (a pattern named by a vari-able), or the appliation of a data onstrutor to zeroor more patterns:p 2 x j x�p j p1 : : : pn; n � 0There are no rules that deal diretly with patterns.6.4 DelarationsA delaration is either a variable with a type anno-tation (type signature), a funtion binding, or a alge-brai type delaration:d 2 x :: t jx p1 : : : pn = e; n � 0 jdata f v1 : : : vn = k1 : : : km;n � 0; m > 0

T [v℄ = v (1)T [t1 ! t2℄ = F T [t1℄ T [t2℄ (2)T [f t1 : : : tn℄ = f T [t1℄ : : : T [tn℄ (3)K[t1 : : : tn℄ = T [t1℄ : : : T [tn℄ (4)S 0 [t℄ = Comp (T [t℄)S n [t1 ! t2℄ = T [t1℄ ! S (n� 1) [t2℄ (5)D[xn :: t℄ = x :: S n [t℄ (6)D[x p1 : : : pn = e℄ = x ŷ1�p1 : : : ŷn�pn = edt (M[x℄) [V ŷ1; : : : ; V ŷn℄ (E[e℄) (7)D[data f v1 : : : vn = k1 : : : km℄ = data f v1 : : : vn = K[k1℄ : : : K[km℄ (8)A[p ! e℄ = p ! E[e℄ (9)E[x?℄ = return x (10)E[x0℄ = x (11)E[xn℄ = funn x (M[x℄) (12)E[0℄ = return (13)E[n℄ = funn (� x̂1 : : : x̂n : return (x̂1 : : : x̂n)) (M[℄) (14)E[e :: t℄ = E[e℄ :: Comp (T [t℄) (15)E[let d1 : : : dn in e℄ = let D[d1℄ : : : D[dn℄ in E[e℄ (16)E[� p1 : : : pn : e℄ = let x̂ = M[� p1 : : : pn : e℄ infunn (� ŷ1�p1 : : : ŷn�pn : edt x̂ [V ŷ1; : : : ; V ŷn℄ (E[e℄)) x̂ (17)E[ase e of a1 : : : an℄ = do f x̂ E[e℄; ase x̂ of A[a1℄ : : : A[an℄ g (18)E[xn e1 : : : em℄= do f ŷ1 E[e1℄; : : : ; ŷm E[em℄; x ŷ1 : : : ŷm g (n = m)= do f ŷ1 E[e1℄; : : : ; ŷm E[em℄; funn�m (x ŷ1 : : : ŷm)M[x e1 : : : em℄ g (n > m)= do f ŷ1 E[e1℄; : : : ; ŷm E[em℄; ẑ1 x ŷ1 : : : ŷn;ẑ2 apply ẑ1 ŷn+1; ẑ3 apply ẑ2 ŷn+2; : : : ; apply ẑm�n ŷmg (n < m) (19)E[x? e1 : : : em℄= do f ŷ1 E[e1℄; : : : ; ŷm E[em℄; ẑ1 apply x ŷ1;ẑ2 apply ẑ1 ŷ2; : : : ; apply ẑm�1 ŷm g (20)E[n e1 : : : em℄= do f ŷ1 E[e1℄; : : : ; ŷm E[em℄; return (ŷ1 : : : ŷm) g (n = m)= do f ŷ1 E[e1℄; : : : ; ŷm E[em℄;funn�m (� ŷm+1 : : : ŷn : return (ŷ1 : : : ŷm ŷm+1 : : : ŷn))M[e1 : : : em℄ g (n > m) (21)E[e1 e2℄ = do f ŷ1 E[e1℄; ŷ2 E[e2℄; apply ŷ1 ŷ2 g (e1 6= x; e1 6=) (22)Figure 3: The transformation rules

Rules 6 { 8 (D) transform delarations, with supportfrom rule 5 (S) for signatures.The transformation of a type signature is depen-dent on the arity of the variable in the delaration.Consider: `onst :: a -> b -> a'. We an de�neonst with di�erent numbers of patterns on the left-hand-side:onst x y = xonst x = \y -> xonst = \x y -> xThe arities of these are two, one and zero respetively.The type of the transformed funtion depends on thetype of the right-hand-side of the funtion delaration(see rule 7). In these three de�nitions the type of theright-hand-side's are di�erent (a for the �rst, `b -> a'for the seond and `a -> b -> a' for the third) be-ause of the di�erent number of patterns to the leftof =. For a funtion of arity n, the �rst n � 1 typearrows in the spine of the type must be preserved toaount for the n patterns in the de�nition. That isthe purpose of rule 5 (S). The result of the funtionis wrapped in the type Comp beause the transformedfuntion threads a list of EDT nodes, as outlined insetion 4. So although eah of the de�nitions of onstbegin with the same type, after transformation theirtypes are di�erent, namely:onst :: a -> b -> Comp aonst :: a -> Comp (F b a)onst :: Comp (F a (F b a)It may seem ounter-intuitive that de�nitionswhih are equivalent in Haskell are transformed dif-ferently. However, this is inevitable. Althoughh and g de�ned in setion 5 are both equiva-lent to True aording to Haskell, these equiva-lenes may not hold in the intended interpretationof the programmer. EDTs, and the transformationswhih generate them, must respet the programmer's(mis)oneptions about the program. Although thede�nitions of onst are very similar, our solution tothe diÆult problem of urried funtions is to treatthem di�erently.Funtion delarations are transformed by rule 7.Fresh variables ŷ are introdued to name eah of thefuntion patterns (using as-pattern syntax). The newvariables are used to name the arguments of the fun-tion for the purposes of onstruting an EDT node.This is stritly neessary only when the patterns arenot variables themselves. The new right-hand-sideonstruts an EDT for the funtion by alling edt onthree arguments: the funtion name (as generated byM), a list of referenes to the funtion's arguments(wrapped in the V onstrutor to make them typeVal), and the transformed original right-hand-side.Algebrai types are introdued with the keyworddata. A delaration names the type and its argu-ments and then lists one or more onstrutor delara-tions. Eah of the onstrutor delarations is trans-formed by K.6.5 AlternativesAlternatives are the branhes of ase expressions.Eah alternative onsists of a pattern and an expres-sion. The expression is evaluated if the disriminatorof the ase expression mathes with the pattern:a 2 p! eRule 9 (A) transforms patterns by applying E to theexpression.

6.6 ExpressionsAn expression is either an appliation of two expres-sions, an expression with an type annotation, a vari-able, a data onstrutor, a lambda abstration, a letexpression, or a ase expression:e 2 e1 e2 j e :: t j x j j� p1 : : : pn : e; n > 0 jlet d1 : : : dn in e; n > 0 jase e of a1 : : : an; n > 0Expressions are transformed by rules 10 { 22 (E).The basi philosophy underlying the transformationis as follows. All transformed expressions are statetransformers, that is they thread a list of EDT nodes,and may our as a statement in the do-notation.If an expression de�nitely denotes a funtional valuethen it must be enoded. If an expression de�nitelydoes not denote a funtion then it is not enoded,but may be turned into a state transformer by theappliation of return. If a transformed funtion isapplied, it must be deoded �rst.Rule 10 transforms pattern bound variables intobasi state transformers by the appliation of return.Rules 11 and 12 transform let-bound variables. If thevariable has arity zero (rule 11), then there is nothingto be done. Unlike pattern variables, we do not needto apply return to nullary let-bound variables be-ause their de�nitions are transformed, and are thusalready state transformers. If the variable has aritygreater than zero the variable is partially applied, andthus onstitutes a funtion. As disussed in setion 5partial appliations require enoding and enapsula-tion, this is done by funn, applied to the variable andits representation (n is the arity of the variable). Therepresentation of the variable is generated byM.Rule 13 transforms nullary onstrutors. Sinethey annot be funtions they do not require enod-ing and are onverted into basi state transformersby return. Rule 14 transforms onstrutors of aritygreater than zero, whih are funtions. Before theonstrutor an be enoded it must be turned intoa state transformer, by the use of a lambda abstra-tion and a all to return. As with non-nullary let-bound variables, enoding and enapsulation is doneby funn, where the representation of the onstrutoris generated byM.Rule 15 transforms expressions with an expliittype annotation. We inlude this rule in the pre-sentation beause it o�ers an important insight intothe relationship between transformed expressions andtheir resulting type. In partiular, the rule states thatif the original expression has type t, the transformedexpression has type `Comp (T [t℄)' { whih is a statetransformer, over t, where all higher-order argumentsare enoded. The type-orretness of the resultingprogram depends on this relationship, and it mustsatis�ed by all the equations for E .Let expressions provide loal variable delarationswhose sope is restrited to a partiular expression.The transformation of these (rule 16) is straightfor-ward: all delarations are transformed by rule D, andthe expression is transformed by E .Rule 17 transforms lambda abstrations. Lambdaabstrations introdue new (anonymous) funtions inplae { their use and delaration are given by the samesyntax, unlike let-bound funtions whose use and de-laration are distint. Two things must be done forlambda abstrations: their representation must beenoded, and the funtion must be transformed toprodue an EDT in a similar fashion to let-boundfuntion delarations (see rule 7). The representation

of the expression is used twie: to name the funtionin the EDT, and to represent the whole expressionwhen it is enoded (in ase it is passed as a higher-order argument). For eÆieny we reuse the enodinggenerated byM by binding it to the variable x̂, allow-ing the two uses to share the one onstrution. Notethat x̂ is the �rst argument to edt, and also the se-ond argument to funn. The onstrution of the EDTnode is the same as for let-bound variables, exept forthe enoding of the funtion name.Case expressions are the primary branhing on-strut in Haskell, and are transformed by rule 18.They onsist of an expression (alled the disrimi-nator) and a number of alternatives. The disrim-inator is evaluated and ompared with the head ofeah alternative in turn. The right-hand-side of the�rst mathing alternative beomes the value of thewhole ase expression. The original disriminator istransformed by E and its value is bound to the newvariable x̂ whih beomes the disriminator of a newase expression whose alternatives are transformed byA. Funtion appliations are transformed by rules 19{ 22. It would be suÆient if we only gave rule 22,however this would result in partiularly ineÆientprograms due to redundant enoding and immediatedeoding of funtional values. To avoid this we in-lude rules 19 { 21 whih are speialisations for theommon ases of appliations where the funtion iseither a variable or a data onstrutor. Further spe-ialisations are possible, for situations where the fun-tion is a lambda abstration, a ase expression or alet expression. To simplify the presentation of thetransformation we do not show them here.Rule 19 transforms appliations of let-bound vari-ables, reall from the disussion in setion 5 that suhappliations may be saturated, under-saturated, orover-saturated. The three alternative equations forrule 19 handle eah of these situations respetively.In all ases the argument expressions are transformedby E , the values of whih are bound to fresh variablesŷ1 : : : ŷm. If the appliation is saturated the laststatement in the do-notation is simply the appliationof the variable to the values of its transformed argu-ments. If the appliation is under-saturated the laststatement onstruts an enapsulation of the wholeexpression and its representation. The arity of thepartial appliation is n � m where n is the arity ofthe variable and m is the number of arguments in theappliation, hene funn�m is used to generate the en-apsulation. As usual M generates a representationof the appliation from its syntax. If the appliationis over-saturated then the variable is applied to itsexpeted number of (transformed) arguments. Theresult is an enapsulated funtion, whih is bound tothe fresh variable ẑ1. Eah of the residual applia-tions (inluding that of ẑ1) must be performed oneat a time, and the intermediate enapsulated fun-tions must be seleted from their enapsulation byapply. It is worth noting that rules 11 and 12 forun-applied ourrenes of let-bound variables are justspeial ases of the �rst two equations for rule 19,whih an be derived by making the number or argu-ments in the appliation zero.Rule 20 transforms appliations of pattern vari-ables. Eah of the arguments in the appliation istransformed by E and the values of eah are bound tofresh variables using the do-notation. Pattern vari-ables whih are applied must be bound to funtions,and those funtions will be transformed and enoded.Due to the transformation of higher-order arguments,the funtions that pattern variables are bound to areenapsulated in the type F. Thus when we apply thefuntion we must selet it from the enapsulation us-ing apply. Where there is more than one argument

we must apply the funtion to eah argument one ata time beause after enoding the result of eah ap-pliation is a new enapsulated funtion.Rule 21 transforms appliations of data-onstrutors. Unlike let-bound variables, data-onstrutors annot be over-saturated, hene thereare only two alternative equations for the appliationof onstrutors, the �rst is for saturated appliationsand the seond is for partial appliations. In bothases the transformation follows almost diretly fromthe one used for let-bound variables, exept that theappliation must be turned into a state transformerby return. Again it is worth noting that rules 13and 14 for un-applied onstrutors are just speialases of the two equations for rule 21, and an bederived by making the number of arguments in theappliation zero.The �nal rule (22) transforms appliations that donot math the previous three rules, namely applia-tions of let, ase and lambda expressions. The fun-tion and argument are transformed by E and theirvalues are bound to fresh variables. Sine the left ex-pression is a funtion, it will be enapsulated aftertransformation and must be seleted from the enap-sulation by apply before it an be applied.6.7 Type ClassesHaskell also has type lasses whih allow the de�ni-tion of (let-bound) funtions to be overloaded withrespet to their type. For example, the funtion `+'an be used to add two integers, or two oating pointnumbers, or any two numerial types for whih it hasa orresponding de�nition. Two hanges to our oresyntax are required to inlude type lasses into thelanguage: quali�ed types | types are extended withonstraints over type variables to indiate overloadedentities, and new funtion binding rules for de�n-ing lass interfaes and instanes. Handling qual-i�ed types is straightforward: leave the onstraintunhanged, and transform the type as usual. Classinstanes and delarations are almost always trans-formed by the normal rules for delarations, how-ever, in ertain irumstanes two or more delara-tions of the one overloaded funtion may have di�er-ent numbers of patterns and hene di�erent arities.Our transformation relies on knowing eah let-boundvariable's arity, so we must ensure that all instanesof an overloaded funtion have the same number ofpatterns. Where there is a di�erene in the arity ofan overloaded funtion we use the number of arrows inthe spine of the funtion's type sheme to determinethe arity of the funtion and adjust the number ofpatterns in eah delaration to suit by eta-onversion.7 Related workThe use of an EDT for delarative debugging is wellknown: (Naish & Barbour 1996, Pope 1998, Sparud1999, Nilsson 2001, Caballero & Rodri'guez-Artalejo2002). The main detrator of the earlier approahesbeing a lak of support for higher-order programming.We have outlined the diÆulty of supporting higher-order programs in setion 5.The �rst known omplete solution to support-ing higher-order funtions for a delarative debuggerbased on program transformation is in (Caballero &Rodri'guez-Artalejo 2002). They require multiple in-termediate funtions to be introdued into the pro-gram for every urried funtion, whih we avoid bytreating transformed funtions as state transformers.They also require the reation of empty nodes in theEDT for partial appliations, whereas we only reate

nodes for saturated appliations. Our transforma-tion enodes the representation of higher-order val-ues, however, they require the names of funtions tobe provided by the runtime environment, whih isunreasonable for Haskell. Their transformation is de-sribed for a very simple funtional language, whihdoes not inlude let, ase or lambda expressions.Sparud gives a program transformation for delar-ative debugging of Haskell (Sparud 1999). He pro-vides a rih set of ombinators to simplify the trans-formed program, and the state transformers in ourwork are inspired by this. He does not use the donotation, though the di�erene is largely a matter ofpresentation. Unfortunately this work only supportssome types of higher-order programming. For print-ing values, he uses type-lasses to provide an over-loaded funtion whih produes a representation forvalues in the program. This still requires supportfrom the runtime environment to determine whetheran expression is evaluated, or yli. In some asesthe overloading will be ambiguous, and it is diÆultto resolve the ambiguity without detailed type infor-mation during transformation. There is no implemen-tation available for this work.Nilsson (Nilsson 2001) uses an instrumented run-time environment to onstrut an EDT as a side-e�etof omputation. The advantage of this approah isthat it allows for greater aess to the runtime repre-sentation of values. A tehnique alled pieemeal tra-ing is employed to onstrain the memory onsumedby the EDT, by plaing an upper limit on the sizeof memory oupied by the EDT at any one time.Re-omputation of part of the program is required togenerate branhes of the tree that do not �t into mem-ory. The disadvantage of this approah is the om-plexity of implementation. A whole new ompiler fora large subset of Haskell was reated for the purposesof providing the neessary instrumented runtime en-vironment. Our motivation for employing programtransformation is to simplify the implementation ofthe debugger and to take advantage of existing om-piler tehnology.A general framework for traing, debugging andobserving lazy funtional omputations based on re-dution histories (or Redex Trails) has been pro-posed in (Sparud & Runiman 1997b, Sparud &Runiman 1997a). The trails reord a rih amount ofinformation about a omputation and various post-proessing tools have been developed to view the in-formation in di�erent ways, inluding delarative de-bugging (Wallae, Chitil, Brehm & Runiman 2001).The main ost of reording Redex Trails is the spaerequired to store the trail, the size of whih being pro-portionate to the duration of the omputation. Toope with the large spae requirement, the trail isserialised and written to �le rather than being main-tained in main memory.8 ConlusionDebugging higher-order ode would be near impossi-ble without a means for printing funtions in a mean-ingful way. In this paper we have presented a pro-gram transformation over a ore Haskell syntax forthe purposes of debugging. Our main ontribution isthe treatment of higher-order ode, as presented insetion 5, where we solve the diÆult issue of urriedappliations and show how to generate detailed rep-resentations of them. We support full Haskell, andonly require a small amount of help from the runtimeenvironment of the ompiler. The transformation ispurely syntax direted, and so an be performed with-out type information whih aids eÆieny and simpli-�es its implementation.

Building the EDT as we have presented in thispaper su�ers from one signi�ant drawbak: exes-sive spae usage. Creating a node in the EDT forevery funtion appliation (even if lazily) maintainsa referene to all intermediate values in the ompu-tation, prohibiting garbage olletion. Mehanismsfor reduing the size of the EDT are essential if thedebugger is to be useful for large programs. This isa signi�ant fous of our future researh. The ur-rent implementation of our debugger is available from:www.s.mu.oz.au/~bjpop/buddhaReferenesCaballero, R. & Rodri'guez-Artalejo, M. (2002), Adelarative debugging system for lazy funtionallogi programs, in M. Hanus, ed., `EletroniNotes in Theoretial Computer Siene', Vol. 64,Elsevier Siene Publishers.Haskell 98 Language Report (2002),http://www.haskell.org/onlinereport.Naish, L. & Barbour, T. (1996), `Towards a portablelazy funtional delarative debugger', AustralianComputer Siene Communiations 18(1), 401{408.Nilsson, H. (2001), `How to look busy while beingas lazy as ever: The implementation of a lazyfuntional debugger', Journal of Funtional Pro-gramming 11(6), 629{671.Pope, B. (1998), Buddha: A delarative debugger forHaskell, Tehnial Report 98/12, The Depart-ment of Computer Siene and Software Engi-neering, The University of Melbourne.Sparud, J. (1999), Traing and Debugging Lazy Fun-tional Computations, PhD thesis, Chalmers Uni-versity of Tehnology, Sweden.Sparud, J. & Runiman, C. (1997a), Complete andpartial redex trails of funtional omputations,in T. D. C. Clak, K. Hammond, ed., `Seletedpapers from 9th International Workshop on theImplementation of Funtional Languages', Vol.LNCS 1467, pp. 160{177.Sparud, J. & Runiman, C. (1997b), Traing lazyfuntional omputations using redex trails, in`PLILP', pp. 291{308.Wadler, P. (1993), Monads for funtional program-ming, in M. Broy, ed., `Program Design Caluli:Proeedings of the 1992 Marktoberdorf Interna-tional Summer Shool', Springer-Verlag.Wadler, P. (1998), `Why no one uses funtional lan-guages', SIGPLAN Noties 33(8), 23{27.Wallae, M., Chitil, O., Brehm, T. & Runiman,C. (2001), Multiple-view traing for Haskell: anew hat, in `Preliminary Proeedings of the 2001ACM SIGPLAN Haskell Workshop', pp. 151{170.

