
A Program Transformation for Debugging Haskell 98Bernard Pope Lee NaishThe Department of Computer S
ien
e and Software EngineeringThe University of Melbourne,Vi
toria 3010, Australia,Email: bjpop�
s.mu.oz.au lee�
s.mu.oz.au
Abstra
tWe present a sour
e-to-sour
e transformation of Haskell 98 pro-grams for the purpose of debugging. The sour
e
ode of a pro-gram is transformed into a new program whi
h, when exe
uted,
omputes the value of the original program and a high-level se-manti
s for that
omputation. The semanti
s is given by a treewhose nodes represent fun
tion appli
ations that were evalu-ated during exe
ution. This tree is useful in situations where ahigh-level view of a
omputation is needed, su
h as de
larativedebugging. The main
ontribution of the paper is the treat-ment of higher-order fun
tions, whi
h have previously provendiÆ
ult to support in de
larative debugging s
hemes.1 Introdu
tionThe
raft of programming is enhan
ed by the pro-vision of quality tools. Unfortunately, the availabil-ity of debugging tools for non-stri
t fun
tional lan-guages is limited, a fa
tor
onsidered detrimental totheir popularity (Wadler 1998). What is the reasonfor su
h pau
ity? Probably the main te
hni
al in-hibitor is the high level of abstra
tion su
h languagespresent to the programmer, most notably transpar-ent operational semanti
s, polymorphism and higher-order fun
tions. On the one hand su
h features area boon to produ
tivity. On the other hand the greatdivide between language and ma
hine makes it morediÆ
ult to re
on
ile the exe
ution of a program andits sour
e
ode.The most basi
 fun
tion of a debugger is to presentthe evaluation of a program in small
hunks. The userof the debugger
ompares the a
tual behavior (as wit-nessed by the debugger) with the intended behaviour.Where there is a dis
repan
y there is a potential bug.An e�e
tive debugging session o

urs when the dis-
repan
y is a

urately identi�ed with a narrow se
tionof program text. Before we build a debugger we mustask ourselves: at what level of abstra
tion should wepresent the evaluation of a program?We opt for a high-level presentation whi
h is ab-stra
ted from the underlying evaluation order, and
losely re
e
ts the synta
ti
 des
ription of the pro-gram. It is generally diÆ
ult for programmers toadopt a low-level understanding of non-stri
t fun
-tional programs, so the high-level presentation isquite sensible in this
ontext.We employ an Evaluation Dependen
e Tree (EDT)to represent the evaluation of Haskell 981 programs.Copyright ©2003, Australian Computer So
iety, In
. Thispaper appeared at the Twenty-Sixth Australasian ComputerS
ien
e Conferen
e (ACSC2003), Adelaide, Australia. Confer-en
es in Resear
h and Pra
ti
e in Information Te
hnology, Vol.16. Mi
hael Oudshoorn, Ed. Reprodu
tion for a
ademi
, not-for pro�t purposes permitted provided this text is in
luded.1(Haskell 98 Language Report 2002). Hereafter we drop the 98from the name.

Nodes in the tree represent fun
tion appli
ations,storing the name (or representation) of the fun
tion,its arguments and result. The EDT is the founda-tion of many de
larative debugging tools, we dis
ussa number of these in se
tion 7.Our te
hnique for produ
ing an EDT is by sour
e-to-sour
e transformation. The original program textis transformed into a new program whi
h
omputesthe value of the original program and produ
es anEDT des
ribing that
omputation. We begin thispaper with a de�nition of the EDT. We outline thetransformation and
onsider the diÆ
ult matter ofhigher-order programming. We then state the
om-plete transformation as a series of equations over anabstra
t syntax of the language. We relate our workto the rest of the �eld and then
on
lude. Familiaritywith Haskell is assumed.2 The Evaluation Dependen
e TreeThe EDT represents an instan
e of the evaluation ofa program. Nodes in the tree
orrespond to fun
tionappli
ations that were made during program evalu-ation,
ontaining fun
tion names and referen
es totheir arguments and result. The stati

all graphof the program determines the dependen
ies betweennodes. Consider the toy program below:main = (\(x,_) -> x) (foo True False)foo x y = (not y, not (xor x y))not True = Falsenot False = Truexor True x = not xxor False x = xFigure 1 illustrates the EDT
orresponding to theevaluation of main. The node for main has two
hil-dren, one for the inner
all to foo, and one for theouter
all to the lambda abstra
tion `\(x, _) -> x',whi
h extra
ts the �rst value from a pair. Lambda ab-stra
tions are anonymous when not bound to an iden-ti�er, as above. The textual de�nition of an anony-mous lambda abstra
tion is used to name the fun
tionin the EDT. In all other
ases we use the identi�er towhi
h the fun
tion is bound. The fun
tion foo hasthree
hildren
orresponding to the two
alls to not,and the one
all to xor. The lambda abstra
tion, notand xor form the terminals of the tree be
ause theydo not
all any other fun
tions.The arguments and results of appli
ations aredrawn inside the nodes, though in pra
ti
e we merelystore referen
es to those values. When a node in thetree is displayed the referen
es are followed and thevalues are printed a

ordingly. Printing
an inter-ra
t badly with non-stri
t evaluation. In the exam-ple program only the �rst
omponent of the tuple re-turned by `foo True False' is ne
essary to
omputethe value of main. Unevaluated expressions, su
h asthe se
ond
omponent of the tuple, are shown as `?'.

main = True

not False
= True

= True
(\(x,_) −> x) (True, ?)

not ? = ?

 = (True, ?)
foo True False

xor True False = ?Figure 1: An example EDT.To a

urately represent the
omputation they mustnot be evaluated further.It is impossible to determine whether an expres-sion is evaluated from within Haskell. Therefore, toprint values refered to by the EDT we have to mo-mentarily step outside the
on�nes of pure fun
tionalprogramming. Our
urrent implementation
alls C
ode through a foreign fun
tion interfa
e. The C
odeinspe
ts the Haskell heap and generates a printablerepresentation of a desired value from the program,
arefully observing whi
h parts of the value are inevaluated form and whi
h are not. To ensure thatall values are in their �nal state of evaluation whenviewed, we for
e the
omputation of the original pro-gram to
ompletion before we traverse the EDT. Theinspe
tion of the Haskell heap requires support fromthe runtime environment.2The EDT is implemented with the following type:data EDT = EDT Exp [Val℄ Val [EDT℄The type has one
onstru
tor with four arguments:the name (or representation) of the fun
tion involvedin an appli
ation; a list of referen
es to the argumentsof an appli
ation; a referen
e to the result of the ap-pli
ation; and a list of
hildren trees. The types Expand Val, for representing fun
tions and referen
es,are dis
ussed in se
tion 3. Additional information
an be kept in the nodes, su
h as type annotations,and sour
e
ode referen
es, however we do not showthem here.We have been slighlty lax in our des
ription of thedependen
ies between nodes in the tree. In parti
ularwe have overlooked higher-order
ode. Fun
tions are�rst-
lass in Haskell, whi
h means that they
an bepassed as arguments, returned as results and storedinside data stru
tures. To a
ertain extent this blursthe notion of synta
ti
 dependen
y between fun
tionappli
ations, sin
e the appli
ation of a fun
tion whi
his passed as an argument to another fun
tion maydepend on the dynami
 behaviour of the program.We address this issue in se
tion 5.3 Representing Values in the EDTThe type Val is a referen
e to a value from a
om-putation. To implement this type we want en
ap-sulated polymorphism | internally a referen
e maypoint to a value of any type, but externally that typeshould be hidden, so that we
an have referen
es tovalues of di�erent types in the same tree. This
an bea
hieved with existential types, whi
h are not part ofthe Haskell standard, but are widely supported:data Val = forall a . V aThe expli
it forall o

urs in a negative
ontext,whi
h is the same as existentially quantifying the typevariable `a'.2We have implemented this for the Glasgow Haskell Compiler(GHC), www.haskell.org/gh
.

Referen
es are kept for the purpose of printing val-ues during the exploration of the EDT. A value isprinted by passing a Val to C
ode whi
h inspe
tsand traverses the value's heap representation. Weprovide the following interfa
e to the foreign
ode:printVal :: Val -> IO ()This fun
tion takes a referen
e to any value and per-forms a side-e�e
t whi
h prints a representation of thevalue. The C
ode is untyped, so it may freely observethe representation of the underlying value, regardlessof its type. The impurity of the C
ode is
ontained bymaking it an I/O a
tion, whi
h in Haskell is denotedby the type
onstru
tor IO. Printing values of prim-itive type su
h as Int and Char is straightforward.Values of
omposite types su
h as tuples and alge-brai
 types
an be printed providing that
onstru
tornames are available, and that there is a me
hanismfor traversing the
omponents of the value. Ordinarilythe
ompiler would not retain the names of
onstru
-tors in the exe
utable
ode of the program, however,in GHC they
an be in
luded by spe
ial request. Theprinter must be able to distinguish between valueswhi
h are
omputed and those whi
h are not, andit must be able to determine when a value is
y
li
.These
apabilities depend on the heap representationof values used by the
ompiler, and what fa
ilities theruntime environment provides for external inspe
tionof the heap. Thankfully GHC is quite generous in thisrespe
t, and all these requirements are easily ful�lled.For fun
tional values we make no assumptions abouthow they are
ompiled or their runtime representa-tion. Instead we expli
itly en
ode a representationinto the program whi
h is derived from the syntax ofthe fun
tion. If ever a fun
tional value is needed tobe displayed we interpret the en
oded representationwhi
h will be stored like any other value on the heap.We dis
uss this approa
h thoroughly in se
tion 5.The name of a fun
tion stored in a node is eitheran identi�er or a lambda abstra
tion. We representboth of these with the data-type Exp:data Exp = ExpId Ident| ExpAp [Exp℄| ExpLambda [Pat℄ Exp| ExpLet [Equation℄ Exp| ExpCase Exp [Alt℄| ExpVal ValThis type is an abstra
t syntax for Haskell expres-sions, though we have trun
ated the de�nition forbrevity. Identi�ers are formed by `ExpId i ', wherei is a string naming the identi�er. Lambda abstra
-tions are formed by `ExpLambda ps e', where ps arebound patterns and e is the right-hand-side of theexpression. When a node from the EDT is displayedthe name of the fun
tion is pretty-printed, for exam-ple `ExpId "not"' would be printed as `not '. Appli-
ations, let and
ase expressions are formed by theExpAp, ExpLet, and ExpCase
onstru
tors. We needa full abstra
t syntax, in
luding patterns, alternativesand equations be
ause we want to be able to show a
omplete lambda abstra
tion whi
h may
ontain allof these synta
ti

onstru
ts. Free variables in an ex-pression are represented simply as a referen
e to thevalue of the variable by the ExpVal
onstru
tor (no-ti
e its argument is of type Val). Therefore, prettyprinting an Exp may involve
alls to printVal. In therest of this paper we presume the existen
e of a fun
-tion,
alledM, whi
h produ
es an appropriate valueof type Exp for a given pie
e of syntax, in pra
ti
e itis trivial to implement, and to save spa
e we do notgive its de�nition. This fun
tion will be used exten-sively when we de�ne the rules of the transformationin se
tion 6. In se
tion 5 we will revisit the Exp typewhen we
onsider the en
oding of fun
tional values.

4 Outline of the TransformationEa
h fun
tion is transformed to
ompute its originalvalue paired with an EDT node. As a �rst approx-imation, we might transform the fun
tion foo fromour toy program as follows:foo x y = let (v1, t1) = not y(v2, t2) = xor x y(v3, t3) = not v2result = (v1, v3)node = EDT (ExpId "foo")[V x, V y℄(V result)[t1, t2, t3℄in (result, node)The new right-hand-side
onstru
ts an EDT node(
alled node). Calls to not and xor are \
attened"(nested
alls are eliminated by introdu
ing new vari-ables) and their EDTs be
ome the
hildren of thenode for foo. The original value of the fun
tion isbound to the variable result and it is returned in apair with node.The expli
it naming and threading of nodes, as int1, t2, and t3, is
umbersome, and
ompli
ates thetransformation. To avoid this
lutter we take advan-tage of a popular fun
tional idiom
alledmonadi
 pro-gramming, whereby, the plumbing of the EDT nodesin the transformed program
an be hidden. The re-sult is shorter transformation rules, and smaller trans-formed programs.Ea
h fun
tion is given a new (additional) parame-ter representing its siblings. When a fun
tion is
alledit
onstru
ts a node and pre�xes it onto the list. Thefun
tion returns a pair
ontaining its original valueand the new list of nodes (with its own node at thefront). To
onstru
t its own node, a fun
tion must
olle
t its
hildren. The
hildren are formed by fun
-tion appli
ations that o

ur on the right-hand-side ofthe fun
tion de�nition. A list of nodes is threadedthrough the body of the fun
tion. Initially the list isempty. As ea
h
hild is
alled a new node is addedto the list, so that all
hildren will appear in the listwhen the evaluation of the body is
omplete.To a

ommodate the threading of nodes, the typeof ea
h fun
tion is modi�ed to in
lude the new param-eter and result. If the result of the original fun
tionhas type `t', the result of transformed fun
tion hastype `Comp t', where Comp is the following type syn-onym:type Comp a = [EDT℄ -> (a, [EDT℄)The new fun
tions
an be viewed as state trans-formers, where the state is a list of nodes, and thetransformation of the state involves adding new nodesto the list. As Wadler and others have shown, mon-ads o�er a neat way to model state transformationin fun
tional languages (Wadler 1993). Haskell hassome helpful syntax for monads (
alled do-notation)that we will use to hide the threading of state throughour transformed program.To enable the do-notation we need a little bit ofplumbing:bind :: Comp a -> (a -> Comp b) -> Comp bbind
omp next= \s1 ->
ase
omp s1 of(val, s2) -> next val s2The role of bind is to join two transformed
ompu-tations together by plumbing the state through ea
hof them. The variable s1 is the initial state, and itis passed to the �rst
omputation resulting in a pair(val, s2), su
h that val is the value of the
ompu-tation and s2 is the output state. The value and the

state are then passed on to the se
ond
omputation.A sequen
e of
omputations
an be joined togetherby nested appli
ations of bind.Do-notation has the following syntax:m 2 dofs1; : : : ; sng; n > 0s 2 e j p e j let d1 : : : dn; n > 0The variables e, p, and d refer to expressions, pat-terns and de
larations, we give their syntax in se
-tion 6. Essentially, the do-notation is a sequen
e ofstatements (denoted by s). In our
ontext ea
h state-ment
orresponds to a transformed
omputation. Byoverloading the syntax with respe
t to the bind fun
-tion we
an write a sequen
e of
omputations withoutexpli
it mention of the threaded state. The follow-ing rules show how do-notation is de-sugared by theHaskell
ompiler: dofeg = edofe; stmtsg = bind e (� : dofstmtsg)dofp e; stmtsg = bind e (� p : dofstmtsg)doflet d; stmtsg = let d in dofstmtsgIn
ertain
ir
umstan
es, su
h as the evaluation of a
onstant, we will need to thread the state through a
omputation unmodi�ed. This is done by wrappingthe
omputation inside a
all to return:return :: a -> Comp areturn x = \s -> (x, s)For example,
onverting the
onstant True into`return True' results in a passive state transformerthat
omputes the
onstant and passes the state un-
hanged on to the next
omputation.The following fun
tion
onstru
ts an EDT node:edt :: Exp -> [Val℄ -> Comp a -> Comp aedt f args
omp= do let (v, s) =
omp [℄add (EDT f args (V v) s)return vwhere add n = \s -> ((), n:s)It is a state transformer with three arguments: thename of the fun
tion to store in the node (f), a listof referen
es to the fun
tion's arguments (args), andthe value of the transformed right-hand-side of thefun
tion (
omp). An empty list of
hildren is passedto the transformed right-hand-side, whi
h evaluatesto a pair
ontaining the original value of the
ompu-tation (v) and the �nal list of
hildren (s). A node forthe appli
ation is
onstru
ted and added to the par-ent's list of siblings by the state transformer add. Theoriginal value of the right-hand-side is then returned.Armed with do-notation, return and edt thetransformation of foo is simpli�ed:foo x y = edt (ExpId "foo")[V x, V y℄(do v1 <- not yv2 <- xor x yv3 <- not v2return (v1, v3))5 Transforming Higher Order CodeHigher-order programming is fundamental in Haskelland fun
tions are �rst-
lass. Furthermore, fun
tionsin Haskell are
urried | multi-argument fun
tionsmay be applied to fewer arguments than their arity.The arity of a fun
tion is determined by the numberof patterns it binds on the left-hand-side of its de�-nition. For example, though `xor' has arity two, it is

possible to apply it to only one argument, su
h as `xorTrue', the result being a fun
tion equivalent to not.With
urrying it is possible to
reate new fun
tionsby partially applying existing ones. Lambda abstra
-tions allow anonymous fun
tions to be de�ned, su
has `\(x,_) -> x'. These features
ause several prob-lems for transformation-based debugging. Considerthe following
ode fragment:foo ... = ... (f x y)We might expe
t that an EDT node for foo hasa
hild of the form f x y = z. However, this as-sumes the arity of f is two (the expression is satu-rated). If the arity is greater, more arguments areexpe
ted (the expression is a partial appli
ation orunder-saturated) and the expression is not redu
ed,hen
e there should be no
orresponding
hild of foofor this appli
ation of f. With a smaller arity theexpression is over-saturated and more than one
hildshould be produ
ed. For example, if f has arity one,there should be two
hildren, of the form f x = gand g y = z. Unfortunately, the arity of f may beunknown at transformation time | f may be an ar-gument of foo and di�erent
alls to foo may havedi�erent arity fun
tions as arguments. An advantageof using state transformers is that the
onstru
tionof the
hildren of foo is not done dire
tly by foo.It is done by the transformed version of the expres-sion f x y, hen
e avoiding (or at least delaying) theproblem of how many
hildren are
onstru
ted.If f is an argument of foo another problem o
-
urs. Ultimately we want a printable representationof the fun
tion in ea
h EDT node but we
an't simplyuse the string "f" | we need a representation of thefun
tion f is bound to at runtime. It may be boundto a fun
tion g of large arity applied to several val-ues, and the appli
ations may have been done in dis-parate parts of the
omputation. Alternatively, thefun
tion may be de�ned with a lambda expression.We
annot expe
t to derive a reasonable print rep-resentation for fun
tions from the heap as we do for�rst order data stru
tures. While there is a straight-forward relationship between a list of integers in theprogram (say) and the heap representation, the rela-tionship between a lambda abstra
tion (whi
h
ouldbe almost the entire program) and its heap represen-tation is
omplex to say the least. Even if we wrotea de-
ompiler, the result may be unre
ognisable tothe programmer. Thus, as mentioned in se
tion 3, ween
ode representations of higher-order arguments sothat they may be pretty-printed when we explore theEDT. Our en
oding of f also allows us to
onstru
tthe right number of
hildren of foo.In this se
tion we �rst give a simpli�ed des
rip-tion of how under- and over-saturated expressions aretransformed, then des
ribe how fun
tion representa-tions are
reated and manipulated. We defer dis
us-sion of lambda expressions until se
tion 6. We willuse the following two fun
tions as examples:ap :: (a -> b) -> a -> bap f x = f x
onst :: a -> b -> a
onst x y = xFollowing from our informal treatment of the trans-formation in the previous se
tion of the paper, wemight transform ea
h of these respe
tively to:ap :: (a -> Comp b) -> a -> Comp bap f x = edt (ExpId "ap")[V f, V x℄(do v1 <- f xreturn v1)

ap (const True) ’c’ = True

const True ’c’ = True

const True ’c’ = Trueap const True

= const True

h = True

g = True

Figure 2: EDTs with higher-order fun
tions
onst :: a -> b -> Comp a
onst x y = edt (ExpId "
onst")[V x, V y℄(do return x)The �rst argument of ap is a fun
tion of type`a -> b'. As with all fun
tions, the transformed ver-sion must be extended to take a list of EDT nodesas an additional argument, and when applied it mustgenerate a value and a list of EDT nodes. Therefore,the type of the �rst argument must
hange to re
e
tthe new behaviour, be
oming `a -> Comp b'. This isre
e
ted in the type s
heme for ap.5.1 Under-saturated expressionsConsider g, whi
h uses ap and
onst:g = ap (
onst True) '
'The appli
ation of
onst on the right-hand-side ofg is partial |
onst expe
ts two arguments butit is only given one. Partial appli
ations are notredu
ible expressions, therefore we do not want tore
ord them in the EDT. Appli
ations whi
h areknown to be partial are therefore treated spe
iallyin the transformation. The type of `
onst True' is`a -> Bool', so in the transformed program it willbe
ome `a -> Comp Bool'. We do not
atten thisappli
ation, but simply pass it as an argument to ap,where it will be bound to f:g = edt (ExpId "g") [℄(do v1 <- ap (
onst True) '
'return v1)The EDT that results from the evaluation of g isshown in �gure 2. Note that the appli
ation of
onstbe
omes a
hild of ap. The reason is as follows. Thevariable f is bound to `
onst True', and the variablex is bound to '
'. The appli
ation `f x' is thereforeequivalent to `
onst True '
''. Thus the expres-sion `f x' on the right-hand-side of ap
orresponds(at runtime) to a full appli
ation of
onst.5.2 Over-saturated expressionsThe following slightly altered de�nition o�ers an in-teresting
omparison:h = ap
onst True '
'Both h and g denote the same value, yet they aretransformed di�erently and result in di�erent EDTs.On the right-hand-side of h,
onst is partially appliedto zero arguments, where previously it was given one.Furthermore, in h, ap is given three arguments, when

we only expe
t it to have two. This is valid be
ause apmay return a fun
tion as its result. We
an make thisexpli
it with parentheses: `(ap
onst True) '
''.The evaluation of `ap
onst True' results in a fun
-tion, namely `
onst True', whi
h is then applied tothe
hara
ter '
'. The appli
ation of
onst o

urson the right-hand-side of h, therefore
onst is a
hildof h rather than ap. The EDT resulting from h isgiven in �gure 2. Transforming h is more
halleng-ing. We defer this task until after we have
onsidereden
oding fun
tion representations.5.3 Printable represenations of fun
tionsWe modify the transformation su
h that when ahigher-order value is
reated (by partial appli
ation,or by lambda abstra
tion) a representation of thefun
tion is derived from its sour
e
ode and pairedwith the fun
tion. We use the type Exp, introdu
edin se
tion 3, to en
ode the fun
tion, and en
apsulatethe fun
tion and representation in the type F:data F a b = F (a -> Comp b) ExpThe en
apsulated fun
tion has type `a -> Comp b'be
ause it it the transformed version of the fun
tionthat it refers to. To sele
t the fun
tion from the en-
apsulation we use apply:apply :: F a b -> a -> Comp bapply (F f _) = fThe type of higher-order arguments must be mod-i�ed to re
e
t the en
oding, and appli
ations of en-
oded fun
tions must be pre
eeded by a
all to apply.Therefore we modify our transformation of ap:ap :: F a b -> a -> Comp bap f x = edt (ExpId "ap")[V f, V x℄(do v1 <- apply f xreturn v1)Calls to apwill need to provide an en
oding of the �rstargument. For example, the fun
tion `
onst True',in the transformed version of g will have to be en-
oded. The representation that we
hoose is simplythe sour
e
ode expressed in the Exp type. To assistthe en
oding we introdu
e the fun
tion fun1 whi
hen
odes fun
tions of arity one:fun1 :: (a -> Comp b)-> Exp -> Comp (F a b)fun1 f e = return (F f e)The �rst argument to fun1 is the transformed fun
-tion, the se
ond is its representation, the result is anen
apsulation of the two, returned in the Comp typeso that it is
onvenient to use in the do-notation.The �nal transformation of g is as follows:g = edt (ExpId "g") [℄(do v1 <- fun1(
onst True)(ExpAp[ExpId "
onst",ExpId, "True"℄)v2 <- ap v1 '
'return v2)The expression `ExpAp [ExpId "
onst"...℄', oftype Exp, en
odes the fun
tion `
onst True'. Thefun
tion and its representation are en
apsulated byfun1, resulting in a value of type `F a Bool' whi
his bound to v1 and subsequently given as the �rstargument to ap.Transformation of h requires an en
oding of
onst, in the expression `ap
onst True'. This is

straightforward: `ExpId "
onst"'. However, the re-sult of the appli
ation is also a fun
tion, namely`
onst True', whi
h must also be en
oded. Clearlythe en
oding of the output fun
tion is dependent onthe en
oding of the input fun
tion. Also the en
odingof the output fun
tion is dependent on the value of xwhi
h is an argument of ap, and
an only be known atruntime. What we want to do is build up the repre-sentation of a partial appli
ation by adding represen-tations of new arguments as they are provided (one ata time). For fun
tions of arity two (su
h as
onst),we en
apsulate the fun
tion with its representation,as before with F, but we trasform the fun
tion su
hthat when applied to a value it returns a new en
odingof that appli
ation. This whole pro
ess is performedby fun2:fun2 :: (a -> b -> Comp
)-> Exp -> Comp (F a (F b
))fun2 f e= return(F (\v -> fun1 (f v) (eAp e v)) e)eAp :: Exp -> a -> ExpeAp e v = ExpAp [e, ExpVal (V v)℄This is intri
ate, and best understood by example.The �rst argument to fun2 is a (transformed) fun
-tion of arity two, and the se
ond argument is its en-
oding. For
onst we would generate the expression:`fun2
onst (ExpId "
onst")'. Expanding the in-ner lambda abstra
tion by substituting for f and egives:\v -> fun1 (
onst v)(eAp (ExpId "
onst") v)and, expanding the
all to fun1 gives:\v -> return (F (
onst v)(eAp (ExpId "
onst") v))and, expanding the
all to eAp gives:\v -> return (F (
onst v)(ExpAp [ExpId "
onst",ExpVal (V v)℄))The type of this expression is `a -> Comp (F b a)'.Given one argument, this will return an en
apsula-tion of
onst applied to that argument and a rep-resentation of that appli
ation derived from the rep-resentation of
onst. The derived representation isgiven by `ExpAp [ExpId "
onst", ExpVal (V v)℄'whi
h
onstru
ts an Exp representing the appli
ationof
onst to whatever the value of v is. In the
ontextof h, v will eventually be bound to True.Using fun2 we
an transform h as follows:h = edt (ExpId "h") [℄(do v1 <- fun2
onst(ExpId "
onst")v2 <- ap v1 Truev3 <- apply v2 '
'return v3)The variable v1 will be bound to`F ... (ExpId "
onst")', where `...' is thelambda abstra
tion unfolded above. The type ofv1 is `F a (F b a)', and it is given as the �rstargument to ap, and thus bound to the variable f.On the right-hand-side of ap, `apply f x' sele
ts thefun
tion from the en
apsulation and applies it to x,whi
h is bound to True. The result is:return (F (
onst True)(ExpAp [ExpId "
onst",ExpVal (V True)℄))

whi
h is an e
apsulation of the partial appli
a-tion `
onst True' and its representation. Thetype of whi
h is `Comp (F b Bool)'. The outer
all to return simply makes the use of do-notation
onvenient. Re
all that the result of`ap
onst True' is a fun
tion, the good newsis that after en
oding we now have a repre-sentation of this fun
tion that is easy to print:`ExpAp [ExpId "
onst", ExpVal (V True)℄'. Theresult of `ap v1 True' is the en
apsulation of`
onst True' and the above representation, and itis bound on the right-hand-side of h to v2. The ap-pli
ation `apply v2 '
'' retrieves the fun
tion fromthe en
apsulation and applies it to the
hara
ter '
'.This is a full appli
ation of
onst and will result ina node being inserted into the EDT under h. Theresult of the appli
ation (True) is bound to v3 andsubsequently returned as the result of h.So far we have shown how to transform partial ap-pli
ations of arity one and two. What about higheraritites? The same prin
iple applies for higher ari-ties, however, we need a family of fun
tions similar tofun2:funn :: (v1 -> ... vn -> Comp vn+1)-> Exp-> Comp (F v1 ... (F vn vn+1) ...)funn f e= return(F (\v -> funn�1 (f v) (eAp e v)) e)A partial appli
ation of arity n is en
oded by funn,however, fun1 remains as before. The maximum ne
-essary value of n is unknown until we have traversedthe whole program. At the end of transformationwe ensure that the appropriate number of funn fun
-tions are generated. For most
ode this number willbe small be
ause high arity fun
tions are un
ommonin human written programs.The arity of a partial appli
ation is simply thearity of the fun
tion being applied minus the num-ber of arguments in the appli
ation. When the fun
-tion is named by a variable, we only know its arityif the variable is bound by the use of =. Su
h vari-ables are often
alled let-bound. However we do notknow the arity of fun
tions that are bound in pat-terns. Therefore en
odings are only made for par-tial appli
ations of let-bound variables. Of
oursepattern variables will be bound to en
oded fun
tionsat runtime, and must be de
oded (by apply) whenthey are applied. In se
tion 6 we will see that thebinding o

urren
e of a variable will determine howappli
ations of that variable are transformed. Par-tial appli
ation of data
onstru
tors are treated ina similar way to let-bound fun
tions, sin
e the ar-ity of
onstru
tors
an be derived from their de�ni-tion. Fun
tion appli
ations are over-saturated whenthe fun
tion is given more arguments than its arity(su
h as the appli
ation `ap
onst True '
'' in h).We break su
h expressions into a full appli
ation ofthe fun
tion (`ap
onst True') whi
h returns an en-
oded fun
tional result, and residual appli
ations, onefor ea
h of the remaining arguments (in this
ase just'
'). The result of all but the last residual appli
a-tions will be a new en
oded fun
tion that must bede
oded by apply before it may be used.6 The transformationIn this se
tion we state the program transformationas a series of rules over a
ore abstra
t syntax forHaskell, listed in �gure 3. To save spa
e we overlooksynta
ti
 sugar whi
h
an be translated into the
orelanguage (su
h as do-notation, list
omprehensions,guarded equations, and where
lauses et
.).

Variables whi
h range over synta
ti
 entities arewritten in itali
s. We presume the following sets ofvariables for the atoms:f 2 Type
onstru
tors (eg Bool)v 2 Type variables (eg a)x; y 2 Variables (eg
onst)
 2 Data Constru
tors (eg True)Synta
ti
 variables are sometimes annotated withsalient attributes: x? denotes a pattern bound vari-able, xn denotes a let-bound variable with arity n,
n denotes a data-
onstru
tor with arity n, and x̂ de-notes a fresh variable, unique in the s
ope that isis introdu
ed. When more than one variable of thesame type is needed we use numeri
 subs
ripts to dis-tinguish them.The transformation rules are equations written ina fun
tional style, whi
h
olle
tively
an be under-stood as a pure fun
tional program. Ea
h rule isnamed by an upper
ase
alligraphi
 letter. Doublesquare bra
kets `[℄' en
lose arguments whi
h denotea synta
ti
 entity, su
h as an expression, or de
lara-tion and so on. Terms appearing in typewriter fontare to be interpreted verbatim, for example returnrefers to the fun
tion of that name de�ned in se
-tion 4. Ellipses indi
ate obvious sequen
es that donot require full representation.6.1 TypesA type is either a type variable, a fun
tional typefrom one type to another, or the appli
ation of a type
onstru
tor to type arguments:t 2 v j t1 ! t2 j f t1 : : : tn; n � 0Rules 1 { 3 (T) transform types. All o

urren
esof the fun
tion arrow (!) are repla
ed by the type
onstru
tor F, to a

ommodate the en
apsulation anden
oding of higher-order values.6.2 Data Constru
tor De
larationsA data
onstru
tor de
laration names the
onstru
-tor and lists the zero or more type arguments of the
onstru
tor: k 2
 t1 : : : tn; n � 0Rule 4 (K) transforms
onstru
tor de
larations, bymapping T over ea
h of the arguments to the
on-stru
tor.6.3 PatternsPatterns are used to bind variables in the argumentsof fun
tions and in
ase alternatives. They are eithera variable, an as-pattern (a pattern named by a vari-able), or the appli
ation of a data
onstru
tor to zeroor more patterns:p 2 x j x�p j
 p1 : : : pn; n � 0There are no rules that deal dire
tly with patterns.6.4 De
larationsA de
laration is either a variable with a type anno-tation (type signature), a fun
tion binding, or a alge-brai
 type de
laration:d 2 x :: t jx p1 : : : pn = e; n � 0 jdata f v1 : : : vn = k1 : : : km;n � 0; m > 0

T [v℄ = v (1)T [t1 ! t2℄ = F T [t1℄ T [t2℄ (2)T [f t1 : : : tn℄ = f T [t1℄ : : : T [tn℄ (3)K[
 t1 : : : tn℄ =
 T [t1℄ : : : T [tn℄ (4)S 0 [t℄ = Comp (T [t℄)S n [t1 ! t2℄ = T [t1℄ ! S (n� 1) [t2℄ (5)D[xn :: t℄ = x :: S n [t℄ (6)D[x p1 : : : pn = e℄ = x ŷ1�p1 : : : ŷn�pn = edt (M[x℄) [V ŷ1; : : : ; V ŷn℄ (E[e℄) (7)D[data f v1 : : : vn = k1 : : : km℄ = data f v1 : : : vn = K[k1℄ : : : K[km℄ (8)A[p ! e℄ = p ! E[e℄ (9)E[x?℄ = return x (10)E[x0℄ = x (11)E[xn℄ = funn x (M[x℄) (12)E[
0℄ = return
 (13)E[
n℄ = funn (� x̂1 : : : x̂n : return (
 x̂1 : : : x̂n)) (M[
℄) (14)E[e :: t℄ = E[e℄ :: Comp (T [t℄) (15)E[let d1 : : : dn in e℄ = let D[d1℄ : : : D[dn℄ in E[e℄ (16)E[� p1 : : : pn : e℄ = let x̂ = M[� p1 : : : pn : e℄ infunn (� ŷ1�p1 : : : ŷn�pn : edt x̂ [V ŷ1; : : : ; V ŷn℄ (E[e℄)) x̂ (17)E[
ase e of a1 : : : an℄ = do f x̂ E[e℄;
ase x̂ of A[a1℄ : : : A[an℄ g (18)E[xn e1 : : : em℄= do f ŷ1 E[e1℄; : : : ; ŷm E[em℄; x ŷ1 : : : ŷm g (n = m)= do f ŷ1 E[e1℄; : : : ; ŷm E[em℄; funn�m (x ŷ1 : : : ŷm)M[x e1 : : : em℄ g (n > m)= do f ŷ1 E[e1℄; : : : ; ŷm E[em℄; ẑ1 x ŷ1 : : : ŷn;ẑ2 apply ẑ1 ŷn+1; ẑ3 apply ẑ2 ŷn+2; : : : ; apply ẑm�n ŷmg (n < m) (19)E[x? e1 : : : em℄= do f ŷ1 E[e1℄; : : : ; ŷm E[em℄; ẑ1 apply x ŷ1;ẑ2 apply ẑ1 ŷ2; : : : ; apply ẑm�1 ŷm g (20)E[
n e1 : : : em℄= do f ŷ1 E[e1℄; : : : ; ŷm E[em℄; return (
 ŷ1 : : : ŷm) g (n = m)= do f ŷ1 E[e1℄; : : : ; ŷm E[em℄;funn�m (� ŷm+1 : : : ŷn : return (
 ŷ1 : : : ŷm ŷm+1 : : : ŷn))M[
 e1 : : : em℄ g (n > m) (21)E[e1 e2℄ = do f ŷ1 E[e1℄; ŷ2 E[e2℄; apply ŷ1 ŷ2 g (e1 6= x; e1 6=
) (22)Figure 3: The transformation rules

Rules 6 { 8 (D) transform de
larations, with supportfrom rule 5 (S) for signatures.The transformation of a type signature is depen-dent on the arity of the variable in the de
laration.Consider: `
onst :: a -> b -> a'. We
an de�ne
onst with di�erent numbers of patterns on the left-hand-side:
onst x y = x
onst x = \y -> x
onst = \x y -> xThe arities of these are two, one and zero respe
tively.The type of the transformed fun
tion depends on thetype of the right-hand-side of the fun
tion de
laration(see rule 7). In these three de�nitions the type of theright-hand-side's are di�erent (a for the �rst, `b -> a'for the se
ond and `a -> b -> a' for the third) be-
ause of the di�erent number of patterns to the leftof =. For a fun
tion of arity n, the �rst n � 1 typearrows in the spine of the type must be preserved toa

ount for the n patterns in the de�nition. That isthe purpose of rule 5 (S). The result of the fun
tionis wrapped in the type Comp be
ause the transformedfun
tion threads a list of EDT nodes, as outlined inse
tion 4. So although ea
h of the de�nitions of
onstbegin with the same type, after transformation theirtypes are di�erent, namely:
onst :: a -> b -> Comp a
onst :: a -> Comp (F b a)
onst :: Comp (F a (F b a)It may seem
ounter-intuitive that de�nitionswhi
h are equivalent in Haskell are transformed dif-ferently. However, this is inevitable. Althoughh and g de�ned in se
tion 5 are both equiva-lent to True a

ording to Haskell, these equiva-len
es may not hold in the intended interpretationof the programmer. EDTs, and the transformationswhi
h generate them, must respe
t the programmer's(mis)
on
eptions about the program. Although thede�nitions of
onst are very similar, our solution tothe diÆ
ult problem of
urried fun
tions is to treatthem di�erently.Fun
tion de
larations are transformed by rule 7.Fresh variables ŷ are introdu
ed to name ea
h of thefun
tion patterns (using as-pattern syntax). The newvariables are used to name the arguments of the fun
-tion for the purposes of
onstru
ting an EDT node.This is stri
tly ne
essary only when the patterns arenot variables themselves. The new right-hand-side
onstru
ts an EDT for the fun
tion by
alling edt onthree arguments: the fun
tion name (as generated byM), a list of referen
es to the fun
tion's arguments(wrapped in the V
onstru
tor to make them typeVal), and the transformed original right-hand-side.Algebrai
 types are introdu
ed with the keyworddata. A de
laration names the type and its argu-ments and then lists one or more
onstru
tor de
lara-tions. Ea
h of the
onstru
tor de
larations is trans-formed by K.6.5 AlternativesAlternatives are the bran
hes of
ase expressions.Ea
h alternative
onsists of a pattern and an expres-sion. The expression is evaluated if the dis
riminatorof the
ase expression mat
hes with the pattern:a 2 p! eRule 9 (A) transforms patterns by applying E to theexpression.

6.6 ExpressionsAn expression is either an appli
ation of two expres-sions, an expression with an type annotation, a vari-able, a data
onstru
tor, a lambda abstra
tion, a letexpression, or a
ase expression:e 2 e1 e2 j e :: t j x j
 j� p1 : : : pn : e; n > 0 jlet d1 : : : dn in e; n > 0 j
ase e of a1 : : : an; n > 0Expressions are transformed by rules 10 { 22 (E).The basi
 philosophy underlying the transformationis as follows. All transformed expressions are statetransformers, that is they thread a list of EDT nodes,and may o

ur as a statement in the do-notation.If an expression de�nitely denotes a fun
tional valuethen it must be en
oded. If an expression de�nitelydoes not denote a fun
tion then it is not en
oded,but may be turned into a state transformer by theappli
ation of return. If a transformed fun
tion isapplied, it must be de
oded �rst.Rule 10 transforms pattern bound variables intobasi
 state transformers by the appli
ation of return.Rules 11 and 12 transform let-bound variables. If thevariable has arity zero (rule 11), then there is nothingto be done. Unlike pattern variables, we do not needto apply return to nullary let-bound variables be-
ause their de�nitions are transformed, and are thusalready state transformers. If the variable has aritygreater than zero the variable is partially applied, andthus
onstitutes a fun
tion. As dis
ussed in se
tion 5partial appli
ations require en
oding and en
apsula-tion, this is done by funn, applied to the variable andits representation (n is the arity of the variable). Therepresentation of the variable is generated byM.Rule 13 transforms nullary
onstru
tors. Sin
ethey
annot be fun
tions they do not require en
od-ing and are
onverted into basi
 state transformersby return. Rule 14 transforms
onstru
tors of aritygreater than zero, whi
h are fun
tions. Before the
onstru
tor
an be en
oded it must be turned intoa state transformer, by the use of a lambda abstra
-tion and a
all to return. As with non-nullary let-bound variables, en
oding and en
apsulation is doneby funn, where the representation of the
onstru
toris generated byM.Rule 15 transforms expressions with an expli
ittype annotation. We in
lude this rule in the pre-sentation be
ause it o�ers an important insight intothe relationship between transformed expressions andtheir resulting type. In parti
ular, the rule states thatif the original expression has type t, the transformedexpression has type `Comp (T [t℄)' { whi
h is a statetransformer, over t, where all higher-order argumentsare en
oded. The type-
orre
tness of the resultingprogram depends on this relationship, and it mustsatis�ed by all the equations for E .Let expressions provide lo
al variable de
larationswhose s
ope is restri
ted to a parti
ular expression.The transformation of these (rule 16) is straightfor-ward: all de
larations are transformed by rule D, andthe expression is transformed by E .Rule 17 transforms lambda abstra
tions. Lambdaabstra
tions introdu
e new (anonymous) fun
tions inpla
e { their use and de
laration are given by the samesyntax, unlike let-bound fun
tions whose use and de
-laration are distin
t. Two things must be done forlambda abstra
tions: their representation must been
oded, and the fun
tion must be transformed toprodu
e an EDT in a similar fashion to let-boundfun
tion de
larations (see rule 7). The representation

of the expression is used twi
e: to name the fun
tionin the EDT, and to represent the whole expressionwhen it is en
oded (in
ase it is passed as a higher-order argument). For eÆ
ien
y we reuse the en
odinggenerated byM by binding it to the variable x̂, allow-ing the two uses to share the one
onstru
tion. Notethat x̂ is the �rst argument to edt, and also the se
-ond argument to funn. The
onstru
tion of the EDTnode is the same as for let-bound variables, ex
ept forthe en
oding of the fun
tion name.Case expressions are the primary bran
hing
on-stru
t in Haskell, and are transformed by rule 18.They
onsist of an expression (
alled the dis
rimi-nator) and a number of alternatives. The dis
rim-inator is evaluated and
ompared with the head ofea
h alternative in turn. The right-hand-side of the�rst mat
hing alternative be
omes the value of thewhole
ase expression. The original dis
riminator istransformed by E and its value is bound to the newvariable x̂ whi
h be
omes the dis
riminator of a new
ase expression whose alternatives are transformed byA. Fun
tion appli
ations are transformed by rules 19{ 22. It would be suÆ
ient if we only gave rule 22,however this would result in parti
ularly ineÆ
ientprograms due to redundant en
oding and immediatede
oding of fun
tional values. To avoid this we in-
lude rules 19 { 21 whi
h are spe
ialisations for the
ommon
ases of appli
ations where the fun
tion iseither a variable or a data
onstru
tor. Further spe-
ialisations are possible, for situations where the fun
-tion is a lambda abstra
tion, a
ase expression or alet expression. To simplify the presentation of thetransformation we do not show them here.Rule 19 transforms appli
ations of let-bound vari-ables, re
all from the dis
ussion in se
tion 5 that su
happli
ations may be saturated, under-saturated, orover-saturated. The three alternative equations forrule 19 handle ea
h of these situations respe
tively.In all
ases the argument expressions are transformedby E , the values of whi
h are bound to fresh variablesŷ1 : : : ŷm. If the appli
ation is saturated the laststatement in the do-notation is simply the appli
ationof the variable to the values of its transformed argu-ments. If the appli
ation is under-saturated the laststatement
onstru
ts an en
apsulation of the wholeexpression and its representation. The arity of thepartial appli
ation is n � m where n is the arity ofthe variable and m is the number of arguments in theappli
ation, hen
e funn�m is used to generate the en-
apsulation. As usual M generates a representationof the appli
ation from its syntax. If the appli
ationis over-saturated then the variable is applied to itsexpe
ted number of (transformed) arguments. Theresult is an en
apsulated fun
tion, whi
h is bound tothe fresh variable ẑ1. Ea
h of the residual appli
a-tions (in
luding that of ẑ1) must be performed oneat a time, and the intermediate en
apsulated fun
-tions must be sele
ted from their en
apsulation byapply. It is worth noting that rules 11 and 12 forun-applied o

urren
es of let-bound variables are justspe
ial
ases of the �rst two equations for rule 19,whi
h
an be derived by making the number or argu-ments in the appli
ation zero.Rule 20 transforms appli
ations of pattern vari-ables. Ea
h of the arguments in the appli
ation istransformed by E and the values of ea
h are bound tofresh variables using the do-notation. Pattern vari-ables whi
h are applied must be bound to fun
tions,and those fun
tions will be transformed and en
oded.Due to the transformation of higher-order arguments,the fun
tions that pattern variables are bound to areen
apsulated in the type F. Thus when we apply thefun
tion we must sele
t it from the en
apsulation us-ing apply. Where there is more than one argument

we must apply the fun
tion to ea
h argument one ata time be
ause after en
oding the result of ea
h ap-pli
ation is a new en
apsulated fun
tion.Rule 21 transforms appli
ations of data-
onstru
tors. Unlike let-bound variables, data-
onstru
tors
annot be over-saturated, hen
e thereare only two alternative equations for the appli
ationof
onstru
tors, the �rst is for saturated appli
ationsand the se
ond is for partial appli
ations. In both
ases the transformation follows almost dire
tly fromthe one used for let-bound variables, ex
ept that theappli
ation must be turned into a state transformerby return. Again it is worth noting that rules 13and 14 for un-applied
onstru
tors are just spe
ial
ases of the two equations for rule 21, and
an bederived by making the number of arguments in theappli
ation zero.The �nal rule (22) transforms appli
ations that donot mat
h the previous three rules, namely appli
a-tions of let,
ase and lambda expressions. The fun
-tion and argument are transformed by E and theirvalues are bound to fresh variables. Sin
e the left ex-pression is a fun
tion, it will be en
apsulated aftertransformation and must be sele
ted from the en
ap-sulation by apply before it
an be applied.6.7 Type ClassesHaskell also has type
lasses whi
h allow the de�ni-tion of (let-bound) fun
tions to be overloaded withrespe
t to their type. For example, the fun
tion `+'
an be used to add two integers, or two
oating pointnumbers, or any two numeri
al types for whi
h it hasa
orresponding de�nition. Two
hanges to our
oresyntax are required to in
lude type
lasses into thelanguage: quali�ed types | types are extended with
onstraints over type variables to indi
ate overloadedentities, and new fun
tion binding rules for de�n-ing
lass interfa
es and instan
es. Handling qual-i�ed types is straightforward: leave the
onstraintun
hanged, and transform the type as usual. Classinstan
es and de
larations are almost always trans-formed by the normal rules for de
larations, how-ever, in
ertain
ir
umstan
es two or more de
lara-tions of the one overloaded fun
tion may have di�er-ent numbers of patterns and hen
e di�erent arities.Our transformation relies on knowing ea
h let-boundvariable's arity, so we must ensure that all instan
esof an overloaded fun
tion have the same number ofpatterns. Where there is a di�eren
e in the arity ofan overloaded fun
tion we use the number of arrows inthe spine of the fun
tion's type s
heme to determinethe arity of the fun
tion and adjust the number ofpatterns in ea
h de
laration to suit by eta-
onversion.7 Related workThe use of an EDT for de
larative debugging is wellknown: (Naish & Barbour 1996, Pope 1998, Sparud1999, Nilsson 2001, Caballero & Rodri'guez-Artalejo2002). The main detra
tor of the earlier approa
hesbeing a la
k of support for higher-order programming.We have outlined the diÆ
ulty of supporting higher-order programs in se
tion 5.The �rst known
omplete solution to support-ing higher-order fun
tions for a de
larative debuggerbased on program transformation is in (Caballero &Rodri'guez-Artalejo 2002). They require multiple in-termediate fun
tions to be introdu
ed into the pro-gram for every
urried fun
tion, whi
h we avoid bytreating transformed fun
tions as state transformers.They also require the
reation of empty nodes in theEDT for partial appli
ations, whereas we only
reate

nodes for saturated appli
ations. Our transforma-tion en
odes the representation of higher-order val-ues, however, they require the names of fun
tions tobe provided by the runtime environment, whi
h isunreasonable for Haskell. Their transformation is de-s
ribed for a very simple fun
tional language, whi
hdoes not in
lude let,
ase or lambda expressions.Sparud gives a program transformation for de
lar-ative debugging of Haskell (Sparud 1999). He pro-vides a ri
h set of
ombinators to simplify the trans-formed program, and the state transformers in ourwork are inspired by this. He does not use the donotation, though the di�eren
e is largely a matter ofpresentation. Unfortunately this work only supportssome types of higher-order programming. For print-ing values, he uses type-
lasses to provide an over-loaded fun
tion whi
h produ
es a representation forvalues in the program. This still requires supportfrom the runtime environment to determine whetheran expression is evaluated, or
y
li
. In some
asesthe overloading will be ambiguous, and it is diÆ
ultto resolve the ambiguity without detailed type infor-mation during transformation. There is no implemen-tation available for this work.Nilsson (Nilsson 2001) uses an instrumented run-time environment to
onstru
t an EDT as a side-e�e
tof
omputation. The advantage of this approa
h isthat it allows for greater a

ess to the runtime repre-sentation of values. A te
hnique
alled pie
emeal tra
-ing is employed to
onstrain the memory
onsumedby the EDT, by pla
ing an upper limit on the sizeof memory o

upied by the EDT at any one time.Re-
omputation of part of the program is required togenerate bran
hes of the tree that do not �t into mem-ory. The disadvantage of this approa
h is the
om-plexity of implementation. A whole new
ompiler fora large subset of Haskell was
reated for the purposesof providing the ne
essary instrumented runtime en-vironment. Our motivation for employing programtransformation is to simplify the implementation ofthe debugger and to take advantage of existing
om-piler te
hnology.A general framework for tra
ing, debugging andobserving lazy fun
tional
omputations based on re-du
tion histories (or Redex Trails) has been pro-posed in (Sparud & Run
iman 1997b, Sparud &Run
iman 1997a). The trails re
ord a ri
h amount ofinformation about a
omputation and various post-pro
essing tools have been developed to view the in-formation in di�erent ways, in
luding de
larative de-bugging (Walla
e, Chitil, Brehm & Run
iman 2001).The main
ost of re
ording Redex Trails is the spa
erequired to store the trail, the size of whi
h being pro-portionate to the duration of the
omputation. To
ope with the large spa
e requirement, the trail isserialised and written to �le rather than being main-tained in main memory.8 Con
lusionDebugging higher-order
ode would be near impossi-ble without a means for printing fun
tions in a mean-ingful way. In this paper we have presented a pro-gram transformation over a
ore Haskell syntax forthe purposes of debugging. Our main
ontribution isthe treatment of higher-order
ode, as presented inse
tion 5, where we solve the diÆ
ult issue of
urriedappli
ations and show how to generate detailed rep-resentations of them. We support full Haskell, andonly require a small amount of help from the runtimeenvironment of the
ompiler. The transformation ispurely syntax dire
ted, and so
an be performed with-out type information whi
h aids eÆ
ien
y and simpli-�es its implementation.

Building the EDT as we have presented in thispaper su�ers from one signi�
ant drawba
k: ex
es-sive spa
e usage. Creating a node in the EDT forevery fun
tion appli
ation (even if lazily) maintainsa referen
e to all intermediate values in the
ompu-tation, prohibiting garbage
olle
tion. Me
hanismsfor redu
ing the size of the EDT are essential if thedebugger is to be useful for large programs. This isa signi�
ant fo
us of our future resear
h. The
ur-rent implementation of our debugger is available from:www.
s.mu.oz.au/~bjpop/buddhaReferen
esCaballero, R. & Rodri'guez-Artalejo, M. (2002), Ade
larative debugging system for lazy fun
tionallogi
 programs, in M. Hanus, ed., `Ele
troni
Notes in Theoreti
al Computer S
ien
e', Vol. 64,Elsevier S
ien
e Publishers.Haskell 98 Language Report (2002),http://www.haskell.org/onlinereport.Naish, L. & Barbour, T. (1996), `Towards a portablelazy fun
tional de
larative debugger', AustralianComputer S
ien
e Communi
ations 18(1), 401{408.Nilsson, H. (2001), `How to look busy while beingas lazy as ever: The implementation of a lazyfun
tional debugger', Journal of Fun
tional Pro-gramming 11(6), 629{671.Pope, B. (1998), Buddha: A de
larative debugger forHaskell, Te
hni
al Report 98/12, The Depart-ment of Computer S
ien
e and Software Engi-neering, The University of Melbourne.Sparud, J. (1999), Tra
ing and Debugging Lazy Fun
-tional Computations, PhD thesis, Chalmers Uni-versity of Te
hnology, Sweden.Sparud, J. & Run
iman, C. (1997a), Complete andpartial redex trails of fun
tional
omputations,in T. D. C. Cla
k, K. Hammond, ed., `Sele
tedpapers from 9th International Workshop on theImplementation of Fun
tional Languages', Vol.LNCS 1467, pp. 160{177.Sparud, J. & Run
iman, C. (1997b), Tra
ing lazyfun
tional
omputations using redex trails, in`PLILP', pp. 291{308.Wadler, P. (1993), Monads for fun
tional program-ming, in M. Broy, ed., `Program Design Cal
uli:Pro
eedings of the 1992 Marktoberdorf Interna-tional Summer S
hool', Springer-Verlag.Wadler, P. (1998), `Why no one uses fun
tional lan-guages', SIGPLAN Noti
es 33(8), 23{27.Walla
e, M., Chitil, O., Brehm, T. & Run
iman,C. (2001), Multiple-view tra
ing for Haskell: anew hat, in `Preliminary Pro
eedings of the 2001ACM SIGPLAN Haskell Workshop', pp. 151{170.

